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ABSTRACT 

This paper a!escribes a neural network system to segment magnetic resonance (MR) spin echo images of the brain. Our 
approach relies on the analysis ofA4R signal decay and on anatomical knowle&e; the system processes two early echoes of 
a standard multislice sequence. i%ee main subsystems can be distinguirhed. The first implements a model of MR signal 
decay; it synthes&s a four-echo multiecho sequerue, in order to add images character&d by long echo-times to the input 
sequence. The second subsystem exploits a priori anatomical knowledge by producing an image, in which pixels 
belonging to brain parenchyma are highlighted. Such anatomical information allows the following submodule to 
distinguish biologically ds~erent tissues with similar water content, and hence similar appearance, which might produce 
mi&rsst$cations. The grey levels of the reconstructed sequence and the output of the second module are processed by the 
third subsystem, which performs the segmentation of the sequence. Each pixel CT assigned to one offive di$erent tissue 
classes that can be revealed with brain MX spin echo imaging. With a suitable encoding, a jve-level segmented image 
can then be produced. The system is based on feed-forward networks trained with the back-propagation algorithm; 
experiments to assess its peformance have been carried out on both simulated and clinical images. 

Keywords: Magnetic resonance imaging, image segmentation, artificial neural networks, spin echo sequences, MR 
image synthesis 

INTRODUCTION 

The automatic segmentation of anatomical structures 
is one of the basic processes in most applications of 
computer vision to medical imagery’; segmentation 
has immediate a 

B 
plications, such as the estimation of 

dimensional an morphological parameters of biolo- 
gical structures. Moreover, the extraction of the 
sections of a given organ from a series of tomograms 
allows 3D information to be explicitly recovered’. 

We have developed a neural-network based system 
which embodies different kinds of knowledge 
required to segment magnetic resonance (MR) 
images of the brain. Independently of its being 
performed by a human observer or by an artificial 
system, the identification of different organs (or, more 
generally, of regions of interest) requires that at least 
two kinds of information be processed. The first 
derives from the physical phenomena involved in the 
image-generation process which produces a grey- 
level representation of the imaged object. The second 
derives from specific anatomical knowledge about the 
district that is being analysed. 

As regards the generation of MR images, an MR 
signal depends on both the biochemical character- 

Correspondence and reprint requests to: Dr Stefano Cagnoni, 
Department of Electronic Engineering, University of Florence, Via di 
S. Marta, 3, 150139 Firenze, Italy 

@ 1993 ButterworthHeinemann for BES 
0141-5425/93/053.5~5-08 

istics of the tissues and the acquisition parameters. In 
particular, a strong dependence on the T2 relaxation 
time (which conspicuously differentiates liquid from 
parenchymal tissues) can be achieved with spin echo 
sequences. Therefore, by analysing such sequences, it 
is possible to evaluate T2 and classify the imaged 
tissues accordingly. 

T2 
The most straightforward procedure for estimating 

is least-s uare 
obtained at 2 

fitting performed on raw signals 
ifferent echo times (YE). Such a method 

has been used both to distinguish healthy from 
pathological tissues and to generate synthetic spin 
echo sequences with an 

T 
desired TE 3,4. However, the 

method requires that: i) the fit be performed on a 
large number of acquisitions with different TEs; (ii) 
such acquisitions be performed in a sufficiently long 
time-span5. Usual1 , neither of these conditions is 
satisfied in clinica ly 
must be ke 

settings, where acquisition time 

hospitals B 
t as short as possible. Furthermore, most 

o not usually archive raw signals, but 
images that have been preprocessed by expanding 
their dynamic range, thus alterin 
decay of the raw signal. Hence, f 

the exponential 
a though sequences 

acquired with similar parameters from the same 
anatomical district are similarly processed, a correct 
estimation of signal decay is not easily obtained with 
conventional statistical methods. 

Therefore, the development of more flexible 
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models of the MR signal is needed and artificial 
neural networks (ANNs) could be suitable for this 
purpose. By means of a proper training procedure, 
ANNs are able to emulate a wide class of multivariate 
functions. In addition, good noise-rejection properties 
are typical of ANN-based systems. This enables 
reliable extraction of underlying prototypes from a 
set of examples6y7*8. 

As regards the use of a priori anatomical know- 
ledge, the following should be considered. Although 
the decay of MR spin echo signals carries relevant 
information about tissue properties, in general its 
analysis does not ensure safe recognition of biological 
structures. As an example, the ac uisition parameters 
are usually set in order to x en ante the contrast 
between well-hydrated .and 
Thus, grey levels B 

arenchymal tissues. 
correspon ing to tissues with 

comparable water content look similar, even if the 
tissues are biologically different. This makes tissue 
discrimination and classification difficult. 

In our first attempt to classify brain tissues using an 
ANN model, subcutaneous fat was often misclassified 
as white matter. A similar result was reported by 
Piraino and co-workersg. Such a problem can be 
overcome if a primary segmentation that extracts the 
brain arenchyma is erformed. Indeed, the three 
main g rain tissues (w ite matter, grey matter and 1 
cerebrospinal fluid) are well differentiated and can 
only be found in the cerebral region. However, 
representation of the required anatomical knowledge 
about the shape and position of the imaged organs is 
hampered by the typical complexity and variability 
of the biological structures. The capabili 

z 
of ANN 

systems to represent and use prototypical nowledge 
implicitly contained in the training set has allowed us 
to solve this problem. 

In the followin sections, we describe the structure 
of our system an f its implementation, and report the 

experimental results obtained on both simulated and 
clinical images. 

SYSTEM ARCHITECTURE 

As schematized in Figure 7, we outlined the following 
main computational processes: (i) analysis of the 
information carried by signal decay; (ii) identification 
of the brain parenchyma; (iii) pixel classification into 
predefined tissue groups. Consequent1 , three main 
subsystems (modules) were designe dy and imple- 
mented. 

The first module, which we have called sequence 
reconstructor (SR), derives a four-image multi- 
echo sequence from a standard two-echo multislice 
sequence by synthesizing two long-TE images. In this 
way it enhances differences in MR signal decay 
among the various tissue components, besides 
improving the signal-to-noise ratio of the se uence. 

The second module (brain detector [BD recog- 3, 
nizes the brain parenchyma and generates a primary 
segmentation in which the brain region is outlined. 
A priori knowledge of the shape of the brain in the 
slices considered is stored in the weights of a properly 
trained neural network. 

The third module, which we have called classifica- 
tion module (CM), processes the outputs of the other 
modules and classifies the pixels as belonging to five 
different classes, representing the main tissues consti- 
tuting the head. 

In all modules we have utilized multilayer feed- 
forward networks, made up of processing elements 
with sigmoidal activation functions. Network training 
was performed using the back-propagation algorithm. 
This neural paradigm has been widely applied to 
different fields, thanks to its general1 non-critical 
behaviour. In fact, the absence of fee dy back connec- 

MR images 

D!z!zKY 

Sequence 
reconstructor c 

( Analysi; of signal decay 1 ( Brain pre-segmeniation 

Classification 

Pixel classification in 
segmentation 

Synthetic 
sequence 

Segmented image 

Figure 1 Structure of the neural network system 
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tions ensures network stability. In addition, only 
moderate computing resources are needed. On the 
other hand, its main drawbacks are usually slow 
convergence and the chance of getting trapped into 
local minima of the error function6~7~8. 

The sequence reconstructor: a neural-network 
model of MR spin echo signal 

MR spin echo signals are characterized by an 
exponentially decaying behaviour, depending on 
both the acquisition ammeters’ echo time TE and 

K repetition time TX, w ich can be set by the operator, 
and on the molecular characteristics of the sam 

P 

le 
(proton density N(H) relaxation times T, and Tz . 

For spin echo sequences that are commonly used in 
clinical onsets, the dependence of pixel intensity 
I on tissue properties and sequence parameters is 
described by the following equation: 

1s cjqH)(l _ e-(7-R- TE/2TJ + e-(mm)) e-w/G (1) 

where c is a constant. 
When typical parameters are considered (TE < 

200 ms, TR > 1000 ms), (1) can be approximated as 
follows: 

I= k(N(H), T,, TR) e-(TE’T’) (lb) 

which shows that such images are strongly Tz- 
de 

P 
endent. As a consequence, the intensity of pixels 

be onging to parenchymal tissues (short Tz) is higher 
in images acquired with short TEs, while well- 
hydrated tissues and liquids (long T2) are brighter in 
long- TE images”. 

The least-squares methods to estimate T2 and 
N(H) are based on the linearization of the expo- 
nential model of equation (lb). This leads to linear 
equations in which the logarithm of proton density 
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N(H) and the reciprocal of relaxation time T2 are 
the unknown quantities*. The coefficients of such 
equations are functions of TE and the correspond- 
ing values of I. The major drawback of such a least- 
s 
% 

uares estimate of T2 is a high sensitivity to noise, 
w ose effects can be limited with the acquisition of a 
large number of images (with different TEs) during 
the longest possible time-span. In this situation, the fit 
proves useful and accurate when Tg or proton density 
maps are to be reconstructed. However, when used to 
synthesize images with intermediate TEs, it adds little 
information to the original sequence. If the input 
images have been preprocessed, the aforementioned 
equations are, in general, no longer adequate to 
model the signal, and another approach is needed. 

The neural-network module that we have devel- 
oped to perform such a task (se uence reconstructor) 

9, consists of a four-layer networ with 18 + 6 + 6 + 3 
processing elements (see Figure 2). The 18 inputs are 
the grey levels of two corresponding 3 X 3 windows 
taken from two short-KY images of the same slice. 
The three ouputs represent the estimated intensity 
values of the central pixel of such windows in three 
images with the same TE and prefixed TEs. There- 
fore, by successively processing pairs of 3 X 3 win- 
dows centred on each pixel of the input images, the 
network synthesizes long-TE images, thus building a 
longer multiecho sequence. 

The training set was derived from multiecho 
sequences, where TE = 50, 100, 150, 200ms and 
7X = 2000 ms. The input patterns are the pixel inten- 
sities of the first two images. The teaching inputs are 
the intensity values of images acquired with TE = 
100, 150,200ms and TX = 2OOOms. 

The training set includes 4500 examples, randomly 
selected from a set of three spin echo multiecho 
sequences. Pixels belong to square regions of interest 
that include only significant parts of the images. 
Background pixels were not included in the training 

lOO-ms image 

18 

150ms 

200ms 

Figure 2 Neural network which makes up the sequence reconstructor subsystem 
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Figure 3 Structure of the brain detector subsystem 

sets, as this could result in the network producing null 
outputs in the presence of low-signal significant 
inputs”. 

The brain detector 

As was explained in the introduction, the brain 
detector identifies the brain by using specific know- 
ledge about its prototypical shape. The BD is a 
specific implementation of a previously developed 
neural-network architecture for tomogram seg- 
mentation’2. In this section we outline its basic 
structure. 

As shown in Figure 3, this module includes three 
ANN submodules: a level evaluator module (LEM), 
an organ focuser module (OFM), and a region finder 
module (RFM). LEM and OFM implement an 
attention-focusing mechanism. Such a mechanism has 
allowed the performances of RFM to be optimized by 
making its response invariant with respect to trans- 
lations and scaling of the observed object. Attention 
focusing is performed by processing low-resolution 
images (typically 16 x 16 or 32 X 32 matrices) 
obtained by decimation of the original images after 
performing a Gaussian smoothing. In this way, the 
focusing process is mainly driven by large-scale 
features, rather than by fine details (which, being 
extremely variable, can be misleading). 

As concerns LEM operation, we have chosen six 
characteristic views which form a minimal set of 
prototypical images that differ from one another in 
number and/or position of the imaged organs. The 
task of LEM is to estimate the characteristic view to 

Synthetic sequence 

r---l/--&l 

which the analysed slice is most similar. In the first 
phase of its o eration, LEM estimates the position of 
centroid C o P the head slice by a network with 16 X 
16 in ut units, 32 + 32 hidden units and 32 output 
units 16 units for each coordinate of C). Afterwards, P 
C is taken as the ori ‘n of a polar reference system 
[r,e] and a logari mic-polar transformation is 8 
performed b relocating the image pixels from (r,0) 
to (log (r+ 1 ,0). ‘i The transformed image is then 
processed by a network with 16 x 16 input units, 
32 + 32 hidden units, and 6 output units. Each of the 
output neurons corresponds to one of the characteris- 
tic views. It is worth noting that logarithmic proces- 
sing forces the network to o 

P 
erate chiefly on the 

basis of the imaged anatomica structures rather than 
their dimensions. 

Following LEM processing, OFM locates the cen- 
tre of the imaged brain structures and extracts a 
rectangular region of interest (ROI) around it. The 
centre is computed by a network which processes: (i) 
a 16 x 16 image; (ii) the code of the characteristic 
view as estimated by LEM. The network structure 
also includes 32 + 32 hidden neurons and 32 output 
neurons. 

Once attention focusing has been performed, RFM 
identifies the ROI pixels that belong to the brain 
parenchyma. RFM is a five-layer network with two 
different processing paths: in the first path the grey 
levels of the pixels enclosed within a 9 x 9 moving 
mask are processed, while the position of the moving 
mask is the in ut to the second 

i tl! 
ath. These paths 

converge into e fourth layer of e network, which 
includes three neurons. The network output is a 
number belonging to [0, 11, which represents the 
‘brain-membership’ of the pixel at the current mask 
position. 

All the networks of BD were trained with image 
sets taken from three patients. A total number of 36 
images was considered. Each of them was ac uired 
using a spin echo sequence (to form axial slices with s 
TE and 558 set equal to 100 and 2000ms, respec- 
tively. 

The classification module 

The sequence reconstructor enhances the signal- 
decay information, while BD utilizes a priori anatomi- 

WM. 

Segmented 

S/F 
image 

Figure 4 

I -, 

Primary brain 
segmentation 

Classification module network 
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cal knowledge. The classification module recesses 
the SR and BD outputs to produce the fma P segmen- 
tation of the image. The CM consists of a neural 
network with 5 + 3 + 4 + 4 units (see Figure 4). 

The network inputs are: (i) the grey levels of four 
corresponding pixels from the SR-generated syn- 
thetic sequence; (ii) the value of the considered pixel 
in the primary segmentation generated by the BD. 

Each output is representative of a class of tissues: 
grey matter (GM), white matter (WM), cerebrospinal 
fluid (CSF) and other hydrated tissues, skin or fat (S/ 
F). The input pixel is assigned to the class represented 
by the output unit with the highest activation, 
provided such an activation is greater than a 
threshold of 0.5. If no outputs are above 0.5, the pixel 
is classified as background (BG). 

As regards network topology, inputs reach two 
different layers: grey levels are fed into the first layer 
and anatomical information into the second layer. In 
this way the latter input has a 

P importance as the grey-leve 
proximately the same 

information coming 
from the synthetic sequence. 

A total of 2500 examples were taken from 25 
coming from three spin echo multislice 

~~$Z~ces. (72? = 50, 100 ms, m = 2000 ms) and 
from the corresponding segmented image, generated 
by BD. These examples were classified by an expert 
radiologist. Half of them (50 examples, per image) 
were used to build the training set. The other 1250 
were used to test the system. The ualues of the 
teaching inputs were assigned as follows: (i) the 
output corresponding to the tissue class of the in ut 
was given a value of 1; (ii) if the input was classifi J as 
background, all outputs were set to 0; (iii) the outputs 
carresponding to tissues that were different from the 
correct one, were given values of 0.3 ori 0.5 (Table I). 
With these values we observed a smooth and suf& 
ciently fast decrease of the error function during the 
training phase. The choice of 0.5 as the threshold 
value for classification actually derives from this 
training strategy. 

SYSTEM rMPLEb4ENT ATION AND RESULTS 

The networks were implemented and trained with a 
software simulation rogram written in C language13. 
As regards the SR, tR e learning phase was fast, with a 
smooth decrease of the error function. In fact, we 
observed that learning sessions with different initial 
conditions and learning rates converge to approxi- 
mately the same weight set. 

Further evidence of this fact is given by the 
relatively short time needed to reach satisfactory 
results. In fact, only about 300 iterations are necessary 
to reach a mean squared error of 1.34 X 1O-2 per 

Table 1 Teaching input values used to train BS* 

GM WM CSF S/F 

Grey matter L 0.5 0.3 
White matter 0.5 1 0.3 
CSF 0.3 0.3 1 
Skin or fat 0.3 0.3 0.3 
Background 0 0 0 

*Each row is the teaching pattern for a given tissue class 

0.3 
0.3 
0.3 
1 
0 

Figure 5 Phantom used for the tests 

pattern, and usually, after about 50 iterations, the 
value of the error is already lower than 1.55 x lo-‘. 

The module that has imposed the heaviest com- 
putational load is the BD. In particular, training of the 
RFM network has required about 5000 iterations to 
converge to a mean squared error of 4.~5 x lo-” per 
pattern. 

During the training phase of the CM, we observed 
that lower learning rates yield better performances, 
although this causes the convergence to be slower. 
This has led us to choose a value of 0.15 for the 
learning rate. As for the SR, no significant influence 
of the initial values of the weight set was observed. 
The SR reached an average squared error per pattern 
of 3.8 X lo-’ in 10000 iterations. 

To quantify the system performances we used real 
MR images and a software-generated phantom (Figure 
5). The phantom is made up of seven overlapping 
ellipses. Moving from the outside inwards, they 
represent skin or fat (S/F), grey matter (GM), white 
matter (WM), and cerebrospinal fluid (CSF), respec- 
tively. Our phantom was ‘imaged’ with a simulated 
spin echo multiecho sequence with four echoes 
(m = 50, 100, 150,200 ms, XV = 2000 ms). The grey 
levels for each region were calculated by averaging 
the grey levels that characterize each tissue on the 
whole training set. A null value was given to the 
background. 

Uniform noise, ranging from -L to L grey levels 
(L = 5, 10, 15, 20), with a dynamic range of 256 grey 
levels, was then added to the first image of the 
sequence. In the other images of the sequence, higher 
noise levels were added. In this way, we tried to 
simulate usual archiving procedures, in which signal 
decay is compensated for with proper resealing. Thus 
images corres 

F 
onding to 100-200 ms echoes were 

expanded by actors ranging from 1.39 to 1.56. 
The SR was tested to assess its noise sensitivity. 
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Figure 6 Comparison between the noise levels assessed in the raw 
images and in different regions of the reconstructed images of the 
phantom with a, i?E = 150 ms and b, 7E = 200 ms; n raw sequence; 
+ grey matter; * white matter; -m- cerebrospinal fluid; X skin or 
fat 

Q+ntitative tests were performed by comparing the 
noise levels of a reconstructed sequence of the 
phantom with those of the ‘raw’ sequence (the 
software-generated sequence with added uniform 
noise). Noise levels were evaluated as the standard 
deviations u of signal in constant-level regions 
of the phantom. The results reported in Figure 6 
demonstrate that the SR has good noise-rejection 
properties. Comparable results and other data have 
been reported , which were obtained using the 
same network architecture to synthesize multiecho 
sequences with 273 = 120, 150, 180ms and 73 = 
2000ms. The SR was also tested with real images. 
In Figure 7, a real multiecho coronal sequence (top) 
is compared with the corresponding one, synthesized 
by the SR (bottom). 

According to these results, the synthetic images 
generated by the network are faithful, low-noise 
emulations of the real ones from the late echoes of a 
spin echo sequence. Furthermore, since comparable 
results have been obtained on both coronal and axial 
sequences, SR performance does not seem to de end 
on the orientation of the slicing plane. The syn tx esis 
of the sequence is quite fast. On an HP-Apollo 710 
workstation, about 11 s are needed to generate a 
sequence, with a 256 x 256 matrix. 

Extensive results concerning the BD were obtained 
from a set of three brain images’*. In particular, an 
average true-positive rate of about 95% and a true- 
negative rate of 99% were obsmed in the identifica- 
tion of brain pixels. 

A first series of tests on the CM have been 
performed using the phantom. For each noise level, 
the ‘raw’ noisy sequences were processed first. In 
order to evaluate the performances of the whole 
s 
x 

stem, the same measurements were repeated using 
e SR to generate the longest- 7E images of the input 

sequence. 
The results of such tests are compared in F&we 8 

and Table 2. As can be seen, the CM is insensitive to 

Figure 7 Comparison between a real multiecho sequence with ZE = 50, 100, 150, 200 ms, 27t = 2000 ms (top) and the corresponding one 
reconstructed by the SR (bottom) 
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Figure 8 Segmentations of the phantom sequence obtained 
with and without using the SR. Top row: the raw images of the 
phantom with increasing added noise (L = 5, 10, 15, 20); mid 
row: the corresponding segmentations obtained without SR 
processing; bottom row: the corresponding segmentations 
obtained after SR processing 

Table 2 Number of misclassifications for different L values and total 
number of pixels for each tissue class in phantom sequences 

L 

Raw sequence Reconstructed Total 
sequence no. of 

5 10 15 20 5 10 15 20 pixels 

Grey matter 0 0 0 0000 0 18382 
White matter 0 7 493 3892 0 0 2 2464 7980 
CSF 00 0 14 17 28 41 289 1844 
Skin or fat 00 0 0000 0 6436 
Background 0 0 0 0 0 0 0 0 30894 

noise levels computed with L = 5, 10. The few mis- 
classifications that can be observed (at L = 5, 10) on 
the sequence reconstructed by the SR are not caused 
by noise, but by a spatial smoothing introduced in the 
reconstruction process. In fact, all such misclassifica- 
tions can be observed only on the boundaries 
between the regions. The smoothing effect probably 
derives from the architecture of the first module, 
which operates on a square input window. Neverthe- 
less, this is a low price to be paid to achieve a good 
noise rejection. In fact, in the tests performed with 
higher noise levels (L = 15, 20), better results were 
achieved on the reconstructed sequence. The greater 
difference between the performance achieved with 

Figure 9 An axial tomogram (left) and the corresponding segmenta- 
tion (right) 

and without the reconstructed sequence can be 
observed on the white matter. The misclassified 
pixels in the reconstructed se uence were about 
95% less (L = 15) and 409/o less 9 L = 20) than in the 
original sequence. It should also be noted that the 
noise levels corresponding to L = 20 are well above 
the average noise level typically observed in real MR 
experiments. 

To test classification accuracy, the system was 
separately tested with the training and the test set 
patterns. Table 3 shows the so-called confusion matri- 
ces calculated on both sets14. In such matrices, the 
diagonal element Cii is the ercentage of pixels 
belonging to class i that have g een correctly classi- 
fied; the off-diagonal element C, is the percentage 
of pixels belonging to class i that have been mis- 
classified as belonging to class j. The system achieved 
an average accuracy of about 92.2% on the trainin 
set, with its performance ranging from 89.9% (CS I3 
to 98.2% (S/F). On the test set, an overall accuracy 
of 94.5% (worst 84.2% [CSF], best 99% [S/F]) was 
achieved. Figure 9 shows an axial tomogram on the 
left, and the corresponding segmented image on the 
right. 

CONCLUSIONS 

Artificial neural networks have proved adequate for 
integrating the use of a priori anatomical knowledge 

Table 3 Confusion matrices and overall performances of CM calculated on the training and on the 
test set 

Training set Test set 

GM WM CSF S/F BG GM WM CSF S/F BG 

Grey matter 91.4 7.6 0.8 0.2 0 92.9 6.0 1.1 0 0 
White matter 7.7 92.2 0.2 0 0 6.9 92.0 0.4 0 0.7 
CSF 5.9 4.2 89.9 0 0 7.9 1.3 84.2 5.3 1.3 
Skin or fat 0 0 0.9 98.2 0.9 0.5 0 0 99.0 0.5 
Background 1.3 0 0.6 0.6 97.5 0 0 0 0.4 98.6 

Global accuracy (%I) 92.96 94.56 

,I. Biomed. Eng. lW3. Vol 15, September 361 



Neural network segmmtation of magnetic resonance images: S. Capwni et al. 

with low-level processing capabilities, as is usually 
needed to segment medical images. 

As shown by the experimental results, the system is 
characterized by accuracy and noise immunity. 
Moreover, good- spatial coherence is typical of the 
segmentations produced by our system, even though 
such segmentations rely mainly on a pixel-based 
classification. 

4. 

5. 

Although we have trained the system with 
examples taken only from healthy brain tissues, the 
same architecture could be used for detecting and 
classifying pathological tissues (not necessarily in the 
brain) as well. In this case, 3D shape and dimensional 
information about pathological entities, such as 
tumours, can be recovered from a stack of segmented 
slices. We are planning to use the system to detect 
demyelinating plaques caused by multiple sclerosis 
and to study their time evolution, 
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Biomedical Engineering Society 
1993 Annual Fall Meeting 
October 21-24, 1993 

The 1993 Fall Meeting of the Biomedical Engineering Society, to be held in Memphis, Tennessee on the 
occasion of the 25th Anniversary of the Society, will focus on the vast strides that biomedical engineering 
has made in both medicine and engineering over the past quarter century. 

Svrmosium to&s will include; 

0 Cardiovascular Engineering 
0 New Areas 
0 Bioengineering and Society 
0 Engineering and Medicine 

0 Cell and Tissue Engineering 

Dr Y.C. Fung of the University of California at San Diego will present a plenary lecture on the topic of 
“Biomechanical Aspects of Tissue Growth and Engineering”. 

For further information please contact: Melanie James, Department of Biomedical Engineering, 
Memphis State University, Memphis, TN 38152, USA. Tel: (901) 678-3733 Fax: (901) 678-4180. 


