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SUMMARY
We perceive the world based on visual information acquired via oculomotor control,1 an activity intertwined
with ongoing cognitive processes.2–4 Cognitive influences have been primarily studied in the context of
macroscopic movements, like saccades and smooth pursuits. However, our eyes are never still, even dur-
ing periods of fixation. One of the fixational eye movements, ocular drifts, shifts the stimulus over hundreds
of receptors on the retina, a motion that has been argued to enhance the processing of spatial detail by
translating spatial into temporal information.5 Despite their apparent randomness, ocular drifts are under
neural control.6–8 However little is known about the control of drift beyond the brainstem circuitry of the
vestibulo-ocular reflex.9,10 Here, we investigated the cognitive control of ocular drifts with a letter discrim-
ination task. The experiment was designed to reveal open-loop effects, i.e., cognitive oculomotor control
driven by specific prior knowledge of the task, independent of incoming sensory information. Open-loop
influences were isolated by randomly presenting pure noise fields (no letters) while subjects engaged
in discriminating specific letter pairs. Our results show open-loop control of drift direction in human
observers.
RESULTS

To test the role of task knowledge in fixational eye movement

(FEM) generation, we examine how ocular drifts differed in a

discrimination task in which the objects to differentiate were

known to the subjects in advance. In separate blocks of trials,

subjects were asked to report whether a letter was an E vs. an

F (EF trials) or an H vs. an N (HN trials). Letters were presented

at the center of gaze (1.5 deg in size), superimposed on a 1/f

noise mask. These letter pairs were chosen so that different fea-

tures of the letter were relevant to the discrimination. Impor-

tantly, 20% of the trials in each block contained no target letter

but only the 1/f noise (‘‘letter-absent trials’’), allowing us to assay

whether task knowledge could operate in the absence of a visual

cue (Figures S1A–S1C) and thus determine whether, as we hy-

pothesize, open-loop control is present.

Task knowledge influences ocular drift orientation
We hypothesize that the statistics of drift will depend on the de-

tails of the visual task, namely, the letter pair to be discriminated.

The broad basis for this hypothesis is that drifts move the stim-

ulus on the retina, and neurons in the primary visual cortex

tend to respond optimally when contours move orthogonal to

their preferred orientation. For the specific task studied here,

this leads us to theorize that the ratio of vertical drifts to oblique

drifts (lower-left to upper-right) will be greater for the E vs. F

discrimination than for the H vs. N discrimination.

This idea is explained in Figure 1A. Each of the letter-pair

discriminations depends on a single bar: for H vs. N, whether
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the central stroke is horizontal or oblique; for E vs. F, whether

a horizontal stroke is present at the bottom of the letter. A

simple cell will respond most strongly when its receptive field

orientation aligns with one of these elements and moves

orthogonally across it. Thus, vertical and oblique motions

will support H vs. N discrimination equally well (left of Fig-

ure 1A): the vertical motion will allow for optimal detection of

the horizontal stroke of the H, while the oblique (lower-left to

upper-right) motion will allow for optimal detection of the

oblique stroke of the N.

In contrast, in the E vs. F discrimination, the only critical

element is horizontal, and horizontally oriented neurons will

respond more strongly when moving vertically. In this case, ver-

tical drifts should elicit stronger cortical responses, facilitating

discrimination, as illustrated in Figure 1A. Therefore, we would

expect cognitive control to alter the distribution of drift orienta-

tions, favoring vertical over oblique motion when the subject

engages in E vs. F discrimination.

Interestingly, a standard model of retinal ganglion cells (RGCs)

leads to the same prediction. The reason is that motions that

cross a bar orthogonally yields a shorter transit time than mo-

tions that cross a bar obliquely. This difference, coupled with

the temporal properties of RGCs, generates a larger predicted

response for motions orthogonal to the critical stimulus features

than for oblique motions (see Figure S1D).

To test this prediction, we compared the amount of drift mo-

tion on the two axes relevant for this task, vertical and oblique.

We computed the ratio of mean-squared drift velocities between

the two axes, R = Vvertical=Voblique, and then compared REF to
Inc.
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Figure 1. Schematic simple cell responses

as a function of drift direction, and human

drift statistics

(A) Time course of the response of a model V1

simple cell during drifts. Eye motion was simulated

as vertical (bottom to the top) or oblique (lower left

to upper right). Schematics of the firing profiles are

illustrated. Note that the two directions of drift yield

signals that discriminate equally well between H

and N (left). But to discriminate between E and F,

vertical drift yields a stronger signal than oblique

drift (right).

(B) Comparison of measured vertical and oblique

drift velocities. The ordinate is the ratio of the

mean-squared velocity in the vertical direction

to the mean-squared velocity orthogonal to the

oblique stroke of the N estimated across all trials.

p = 0.03.

(C) Same analysis as (B) but separating the trials

with letter-present and letter-absent. p = 0.06

for letter-present, p = 0.0014 for letter-absent,

p = 0.018 for comparison between letter-present

and letter-absent conditions. One-tailed paired

t tests in (B) and (C).

See also Figure S1.
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RHN. Figure 1B shows the average REF and RHN across all

subjects (in black) and for each individual. Supporting our

hypothesis, on average across all trials types (i.e. with stimulus

either present or absent), REF was indeed larger than RHN (p<

0:05, one-tailed paired t-test), suggesting cognitive control of

ocular drift.

Previous work has suggested that ocular drift can be influ-

enced by the nature of the visual target.6,11 These influences

may include components due solely to task knowledge (open-

loop) and components that require a sensory response to the

stimulus (closed-loop). By analyzing trials in which no stimulus

was present—but in which the subject planned an H vs. N or

an E vs. F discrimination, we isolated components that are

necessarily open-loop.

Figure 1C shows the results from this analysis. The variance

ratio is estimated from just the letter-present (left) or just the let-

ter-absent (right) trials. Both conditions show a trend toward

more vertical drifts in the EF condition, but the difference

is significantly more prominent in the letter-absent condition

(p = 0.0014 for letter-absent, p = 0.06 for letter-present,

p = 0.018 for comparison between conditions, one-tailed paired

t test in all cases, because our hypothesis specifies the direction

of the change). Thus, we confirm that task knowledge influences

ocular drift orientation, and that this influence is primarily via

open-loop control.

Individual differences in drift modulation
Figure 1 shows that, on average, observers change their drift

behavior according to the specific discrimination they engage

in. Because drift characteristics are also known to vary
Current B
considerably across individuals, the

question emerges of how each subject

tuned their idiosyncratic pattern of eye

movements to the task. We therefore
turned to a more comprehensive measure of drift statistics

than the ratio of two directional velocities. In keeping with pre-

vious observations,12 drift velocity distributions were well

approximated by two-dimensional Gaussians (Figure S2A).

We, therefore, summarized these distributions by their covari-

ances, visualized as covariance ellipses (Figure 2A). This dis-

plays the dominant drift orientation as the major axis of the

covariance ellipse (indicated by the arrow’s orientation) and

the degree of anisotropy as its deviation from circularity (indi-

cated by the arrow’s length).

This analysis showed that three observers (S1, S2, and S3)

exhibited a dominant orientation that was more nearly vertical

in the EF trials, either in direction, magnitude, or both. S6 ex-

hibited a similar trend in the letter-absent trials, although this

change did not reach statistical significance. S4 showed very

little change across trial types, whereas S5 exhibited a

different behavior, namely a dominant oblique orientation in

the HN trials and a horizontal orientation in the EF trials. We

will show below that these seemingly disparate behaviors

can all be explained by a common visuomotor strategy shared

across subjects.

To measure the overall influence of task on drift statistics in in-

dividual observers, we measured the dis-similarity between

covariance matrices in the two conditions. This measure (stan-

dard for comparing 232 symmetric matrices, see STAR

Methods) considers differences in size, shape, and orientation

and weighs orientation more strongly with increasing eccentric-

ity. Figure 2B shows the probability that this dis-similarity

between HN and EF trials would have arisen by chance, given

the observed trial-to-trial variability of ocular drift. Statistically
iology 33, 1606–1612, April 24, 2023 1607



Figure 2. Individual drift velocity pattern depends on stimulus set

(A)Drift velocity covariance ellipses fromHN trials (blue) and EF trials (red). (Top) Letter-present trials. (Bottom) Letter-absent trials. Covariance ellipses cover 95%

of the probability distribution of drift velocities; the arrow’s orientation is themajor axis of the ellipse, and its length is the anisotropy,measured as the square of the

eccentricity.

(B) Dis-similarity between HN and EF covariance ellipses in each subject. (Green) Letter-present trials. (Orange) Letter-absent trials (Error bars: 1 standard

deviation. *p < 0.05, **p < 0.01).

See also Figures S2, S3, and S4.
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significant differences (p< 0:05) were present in 5 out of the

6 subjects in the letter-present trials. Strikingly, statistically sig-

nificant differences also occurred in the letter-absent trials (Fig-

ure 2B) in 4 subjects. Thus, our results indicate that most sub-

jects change their drifts based on prior knowledge of the

discrimination to be made, and in most subjects this difference

is present in the letter-absent trials (open-loop) as well.

Conversely, by comparing drifts during the periods in the H tri-

als and the N trials when the letter is present, or by making the

parallel comparison in the EF blocks, we isolated components

that are necessarily closed-loop. No subject showed a difference

between FEM statistics in these comparisons.

We also found that there was no difference in drift trajectory

curvature for HN vs. EF trials (Figure S2B) (two-tailed Wilcoxon

signed rank test, p> 0:05 within each subject; two-tailed paired

t-test across subjects, p> 0:05). Given our hypothesis, this was

not surprising: while curvature increases in a high-acuity task,6

it does not measure drift direction.

Drift velocity distribution changes are independent of
microsaccades and block-to-block difference
Microsaccades can be influenced by cognitive factors,6,13,14 and

indeed, we found that microsaccade landing points differed in

HN vs. EF trials (see supplemental information and Figure S3).

However, this was not the basis of the differences in drift

statistics: repeating our analysis, restricted to drifts that were

at least 100 ms away from any other type of eye movement

(Figures S4A–S4D), as well as excluding trials with anymicrosac-

cade, showed the same shift in drift statistics between HN and

EF trials reported in Figure 2, for both letter-present and letter-

absent trials. Thus, the cognitive influence on drift statistics is

distinct from any cognitive influence on microsaccades.

Our findings were also not due to block-to-block differences

in eye movements independent of the letter pair to be
1608 Current Biology 33, 1606–1612, April 24, 2023
discriminated. To show this, we compared the difference be-

tween HN and EF consensus ellipses with that of surrogate

data sets inwhich entire blockswere relabeled in a balanced ran-

domized fashion. Statistical significance (p< 0:05) was present in

4 subjects in one or both of the two trial types (letter-present, let-

ter-absent) (Figures S4E and S4F).

Decoding single-trial trajectories
The above results identify specific task-driven influences on

ocular drifts during letter discrimination. Given that these influ-

ences occurred in most subjects, we wondered whether the re-

sulting difference in velocity distributions suffices to identify the

task (HN vs. EF) from a single trial eye trajectory. To focus on the

shape difference of covariance ellipses, we normalized their size

and computed their dissimilarities (Figures 3A and 3B). Subtle

but significant shape differences of the normalized covariances

were seen in HN vs. EF conditions for letter-present (4 subjects)

and letter-absent (2 subjects) trials.

We built a decoder that compared the velocity covariance

measured in an individual trial to the normalized covariances

estimated across all HN or EF trials (omitting the decoded trial).

As described above, covariances were estimated from 300ms of

drifts during each trial and normalized. The decoder then as-

signed the held-out trial to the EF or HN block according to

whether its covariance ellipse was more similar to the subject’s

HN average vs. the EF average. Figure 3C shows that this ‘‘sim-

ilarity decoder’’ identified the task (HN vs. EF) from the drift tra-

jectory at above-chance levels whenever a subject showed a dif-

ference in drift covariances between HN and EF blocks, both in

the letter-present trials or the letter-absent trials (Figure 3B). Very

similar results were obtained by decoding the trials by maximum

likelihood, i.e., by comparing the likelihood of a given trial’s tra-

jectory, computed from the covariance ellipse for each trial

type. Thus, in the subjects that exhibit cognitive drift



Figure 3. Decoding single trials via their

drifts

(A and B) Analysis of Figure 2 applied to covari-

ance ellipses after normalizing to the same total

area. In (A), the direction of the arrows indicates

the dominant orientation of drift velocities, and

their lengths indicate the degree of anisotropy.

(C) Drifts from 300-ms periods of individual trials

were decoded into task (HN vs. EF blocks) based

on the similarity of the single trial covariance to the

covariance estimated from all trials of each con-

dition. The panel shows the performance of the

similarity decoder across subjects; * indicates

fraction correct higher than chance (p< 0:05) by

binomial statistics.
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modulations, it is possible to predict with better-than-chance ac-

curacy the task that the subject prepares to tackle just by looking

at the drift covariances.

A shared transformation across subjects
The task-dependent changes indrift statistics seen inFigure2 vary

across subjects, both in quality and magnitude. We hypothesized

that there might be a single underlying transformation that ac-

counts for all subjects’ changes in drift velocity distributions: for

thevertical dominance inEF trials in somesubjectsand theoblique

dominance inHN trials in others, and for the changes in anisotropy

of the velocity signals (Figures 3A and 3B). That is, we sought a

single coordinate transformation, which, when applied with a sub-

ject-specific strength, would account for the change from HN- to

EF-normalized covariance ellipses in all subjects. Formally, this

corresponds (see STAR Methods) to seeking a common coordi-

nate transformation L and subject-specific strengths sk , so that

the coordinate transformations eskL account for the transforma-

tions between the HN and EF ellipses. This transformation L could

produce a combination of rotation and stretching. The search for L

was done by minimizing the dis-similarity between covariance

ellipses after applying this transformation.

Figure 4A shows the inferred shared transformation of the ve-

locity distribution by progressively applying graded amounts of

this transformation, using the HN ellipses of subjects S1 and S5

as a starting point. This shows that the shared transformation
Current B
encompasses two behaviors: (1) If the co-

variances for theHNcondition are close to

isotropic (as for S1, top row of Figure 4A),

the full transformation leads to a covari-

ance ellipse which has a dominant vertical

orientation for the EF condition. (2) If the

covariances are strongly anisotropic

in the oblique orientation (as for S5, bot-

tom row of Figure 4A), the ellipse does

not attain a vertical orientation and

passes through a transitional stage with

a nearly horizontal dominant orienta-

tion—accounting for this subject’s data

in Figure 2A. Interestingly, irrespective of

covariance patterns, application of this

common transformation always increases

the ratio of horizontal/oblique motion
(Figure 4B). This holds even when graded amounts of the trans-

formation yields an ellipse with a dominant horizontal direction,

as in the transitional stages in the bottom row of Figure 4A.

Moreover, application of the shared transformation in varying

degrees (Figure 4C) also accounts for the range of findings in

all subjects who exhibited significantly different drift behaviors

in between HN and EF blocks, including S5, in whose data the

dominant direction in the EF condition is horizontal.

To understand whether top-down cognitive influences on eye

drifts results in similar changes, we applied the same transforma-

tions to the corresponding letter-absent trials. Figure 4D shows

the dis-similarity changes after applying the transformation, and

Figure 4E shows the transformation strength applied. Interest-

ingly, this shared transformation (along with the same subject-

dependent strengths sk ) effectively decreased the dis-similarity

in most subjects, as shown in Figure 4D. This implies that the

task-dependent change is at least partially independent of visual

stimulation. Thus, despite the large individual variability, there is a

common open-loop strategy for controlling drift velocity distribu-

tions according to the letter pair to be discriminated.

DISCUSSION

FEMs are an essential part of themachinery that actively collects

and processes visual information during fixation. It is known that

FEMs are modulated by the general characteristics of a visual
iology 33, 1606–1612, April 24, 2023 1609



Figure 4. A common control strategy despite individual differences in drift characteristics
(A) Visualization of the shared transformation by applying graded amounts of the transformation to the HN ellipses from subject 1 (top row) and subject 5 (bottom

row). Arrows indicate the dominant direction of the drift velocities, and their lengths indicate the degree of anisotropy.

(B) The ratio of the mean-squared velocity in the vertical direction to the mean-squared velocity orthogonal to the oblique stroke of the N in each graded

transformation in (A).

(C) HN (blue) and EF (red) covariance ellipses for each subject before and after applying varying amounts of the shared transformation. See STAR Methods for

details.

(D) Dis-similarities of HN and EF covariance ellipses before and after applying the shared transformation. (Left) target-present trials. (Right) target-absent trials.

(E) The amount of transformation applied in each subject.
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task—for example, they slow in high-acuity tasks and this maps

higher spatial frequencies into the retina’s temporal sensitivity

range.6 Here, we found a qualitatively different level of control:

ocular drifts are influenced by the detailed characteristics of vi-

sual stimuli, and this influence can occur in an open-loop fashion

based on specific task knowledge. When discriminating be-

tween two known-in-advance letters, subjects alter their drifts
1610 Current Biology 33, 1606–1612, April 24, 2023
to emphasize orientations orthogonal to the distinguishing fea-

tures of the letter pairs. Importantly, these effects were observed

in most subjects even when no target was present, indicating the

influence of task knowledge independent of visual information.

In addition, this open-loop influence was comparable or even

larger than the closed-loop effect (see Figures 2B and 3B).

Based on the modulation in individual trials, we showed that it
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is possible to identify the ongoing task, i.e., the letter pair being

discriminated. Finally, we found that the drift velocity differences

between the two kinds of letter-pair trials (HN and EF) could be

accounted for by a shared transformation of drift velocity distri-

butions, indicating a common strategy across subjects despite

well-known idiosyncratic differences in drift characteristics.

The level of FEM cognitive control we discovered is highly

specific and indicative of its possible purpose: increasing the

luminance transients driven by the task-relevant stimulus fea-

tures. Independently, the top-down control of microsaccades

helps spatial selection within the foveal field, selecting the

portion of the stimulus that is most relevant for the task.

Together, both benefit visual perception by using cognitive stra-

tegies, knowledge, and experience to better acquire visual

information.

It is worth noting that our findings indicate a commonality of

drift control across subjects, despite the intersubject variability

in FEMs during letter discrimination. Specifically, speed of drifts

and speed change vary across subjects, and some subjects

frequently make microsaccades, whereas others do so only

rarely. These differences may in part reflect variation in subjects’

eye structure. For example, different densities of the cone

mosaic15 could favor different magnitudes of drifts. Although it

remains unclear what exactly determines the characteristics of

each drift period, our data show a within-subject dependence

of drift statistics based on the specific task and that the individual

differences can be understood in terms of a shared transforma-

tion of the coordinates in which drifts are controlled.

Our findings concerning the influence of cognitive factors on

FEMs need to be integrated into current understanding of neural

mechanisms of eye movement control. Since amplitudes of mi-

crosaccades and saccades form a continuum,12,14,16,17 the

obvious hypothesis is that cognitive influences over microsac-

cades and saccades travel along the same pathways. Several

studies have probed the neural basis of how saccade andmicro-

saccade generation depend on visual cues,18–20 but little is

known about howmicrosaccade generation and drift generation

interact. Additionally, since alterations of FEMs are present in a

range of ophthalmological21 and neurological disorders,22,23

characterization of FEMs and their control has the potential to

be a clinical diagnostic tool.

Lastly, our findings raise the question of which brain structures

are involved in open-loop control of drifts. Drift control is likely to

involve the same cortical18,19,24,25 and cerebellar10,26 regions

that are involved in control of fixation. But one cannot rule out

direct cognitive control of brainstem circuitry. Critically, to ac-

count for our findings, the control pathway must provide task-

specific directional information.
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tracing; Repository Name: Zenodo; Zenodo Data: https://doi.org/10.5281/zenodo.7647536). Any additional information required to

reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects
6 healthy subjects participated in the study (4 females and 2 males; average age: 27; age range: 22–31). Subjects were naive about

the purpose of the study, were compensated for their participation, and provided informed consent. To qualify, subjects had to

possess at least 20/20 acuity in the right eye (after correction if needed), as assessed by correct identification of at least 75% of

the optotypes in the 20/20 line of a standard Snellen test. All procedures were approved by the Research Subjects Review Board

at the University of Rochester and the Institutional Review Board of Weill Cornell Medical College.

METHOD DETAILS

Apparatus
Stimuli were displayed on an LCD monitor (Acer Predator XB272) at a refresh rate of 240 Hz and spatial resolution of 1920 3 1080

pixels and a background mean luminance of 18 cd/ m2. Subjects performed the taskmonocularly with their right eye; the left eye was

patched. A dental-imprint bite bar and a headrest were used to minimize head movements. The movements of the right eye were

measured bymeans of a custom digital Dual-Purkinje Image (dDPI) eye-tracker,27 a systemwith subarcminute resolution and internal

noise of 0.07 arcsec.28,29 The eye position signals were sampled at 340 Hz.

Task & stimuli
Healthy human subjects performed two-alternative letter discrimination tasks, with stimuli presented on an LCD monitor in a dark

room. Blocks of trials (each consisting of 50-100) were of two types, one in which they discriminated H vs. N and one in which

they discriminated E vs. F. We refer to these as HN and EF trials, respectively. Blocks were presented in interleaved order and sub-

jects were informed of the letter pair to be discriminated at the start of each block. In all blocks, each letter was presented in 40% of

the trials, and 20% of trials contained only noise. Letters were in Helvetica font and subtended approximately 1:5+. They were pre-

sented in positive contrast and superimposed on a 2+ square patch of 1/f noise (f from 1 to 16 cycles per degree), with a root-mean-

squared contrast of 0.195 (see Figure S1C for examples).

To keep task difficulty comparable across subjects and over time, we manipulated the contrast of the letter so that performance

was 75% in preliminary trials on each day. The same contrast was used for the HN and EF trials.

Subjects initiated the trial with a button-press, which triggered the appearance of fixation point, a small white square. Once the

subject maintained fixation of the center within 0.5 deg for 600 ms, the trial began with the presentation of stimulus at the center

of the display. Contrast (letter and noise) was ramped up linearly for 1 sec, held at a plateau for 500ms, and then off (see Figure S1B).

Subjects had to respond within 5 s after the stimulus reached plateau by a button-press.
Current Biology 33, 1606–1612.e1–e4, April 24, 2023 e1

mailto:yel2005@alumni.weill.cornell.edu
mailto:yel2005@alumni.weill.cornell.edu
https://doi.org/10.5281/zenodo.7647536
https://doi.org/10.5281/zenodo.7647536


ll
Report
QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis
Data analysis began with a pre-processing stage in which trials were parsed into periods of microsaccades and drifts, along with

rejection of trials with poor tracking, artifacts, blinks, or large saccades. Following this, we carried out several quantitative analyses

of drifts and microsaccades and their relationship to the task, visual stimuli, and performance.

The preprocessing stage uses standard techniques reported in previous publications,6,13 and is summarized here. The raw posi-

tion signal on each channel (horizontal and vertical) was first filtered and differentiated by means of a Savitzky-Golay filter with cutoff

frequency at approximately 30 Hz, and an effective smoothing window of 20 ms. The eye trajectory was then parsed into periods of

large saccades, microsaccades, and fixational drifts. As in previous publications using the DPI eye-tracking method, movements

with maximum speed higher than 3+/sec and amplitude larger than 0:5+ were classified as saccades. The amplitude was defined

as the distance between the locations at which eye velocity became greater (onset) and lesser (offset) than 2+/sec. Microsaccades

were defined as saccades with amplitudes smaller than 30 arcmin. The segments between saccades ormicrosaccades were labeled

as periods of fixational drifts. Trials with large saccades and with eye movements that moved fixation beyond the bounds of the

stimulus were discarded. See Table S1 for the summary of the numbers of trials given conditions in all six subjects.

To select trials for FEM analysis, we excluded trials containing blinks or artifacts from head movements or the eye tracker. All

occurrences of microsaccades during the entire stimulus presentation (including the contrast ramp) were analyzed. For analysis

of drift, we further excluded trials with drift velocities over 5 deg/s, so that the analysis would not be contaminated by small unde-

tected microsaccades. For each valid trial, we then extracted the first available 300 ms period that did not include times within

50 ms of a saccade or microsaccade, beginning with the time at which stimulus contrast was maximal. The exclusion of times

near saccades or microsaccades was to control for possible artifacts in the estimation of the instantaneous in velocity of ocular drift

resulting from these rapid movements. All such 300 ms periods of drifts from valid trials were then pooled together for further drift

analysis.

Ocular drift analysis
To compare two drift velocity distributions, we first estimated drift velocity covariance ellipses from all trials, and then quantified the

dis-similarity between conditions as described below. The best-estimate ellipses illustrated (e.g., in Figures 2A and 3A) were 95%

probability contours.

Statistical significance of the difference in covariances was determined by comparing the observed difference in covariances to an

empirical null distribution. The empirical null distribution was created from 1000 surrogate datasets, each generated by randomly

relabeling trials as HN or EF, regardless of the actual stimulus. We then computed the dis-similarity between the covariance ellipses

derived these surrogate datasets, and determined the fraction of the surrogate dis-similarity values that exceeded the dis-similarity

value computed from the actual data.

To include the effects of block-to-block variations in eyemovements (Figures S4E and S4F), surrogate datasets were computed by

balanced block relabeling of half of the blocks (6–11 blocks in each condition, 1000 draws).

Comparison of shapes of 2D distributions
To quantify the difference in the shape of two-dimensional distributions between conditions, e.g., between drift velocity distributions

in HN and EF trials (Figures 2B and 3B), we proceeded as follows. We first parameterized the shape of each distribution by fitting it

with a two-dimensional Gaussian. Since the shape of a two-dimensional Gaussian is determined by its covariance matrix, we quan-

tified the difference in shape by a standard distance on the set of two-dimensional symmetric positive definite real matrices.30 For

covariance matrices C1 and C2, this distance is defined by

d0ðC1;C2Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log2ðl1Þ+ log2ðl2Þ

p
(Equation 1)

where li are the two eigenvalues of C� 1
1 C2. Note that the distance is zero only if the li are both 1, i.e., if C1 = C2.

The distance (d0) is appropriate for comparing shape since it takes into the account size differences, eccentricity differences, and

orientation differences, and considers orientation more strongly when the shape becomes more eccentric. In addition, the distance

remains unchanged if both covariance matrices are multiplied by the same scale factor or rotated by the same amount.

To compare 2D distributions after normalization by size (Figure 3B), the covariance matrices of the two distributions were each

divided by the square root of their determinants (i.e., the areas of the corresponding ellipses) before computing the above distance.

Curvature (k) of drift trajectories on individual trials was determined from the first and second derivatives of the eye position (x;y) at

each time, using code kindly provided by J. Intoy and used in Intoy et al.6

k =
jx0y00 � y0x00j
ðx02 + y02Þ3=2

(Equation 2)

Microsaccade analysis
To study the properties of microsaccades, we compared the scatter of landing position distributions between HN and EF trials. All the

microsaccades made during stimulus display were analyzed. To characterize landing position distributions (Figure S3), we found the
e2 Current Biology 33, 1606–1612.e1–e4, April 24, 2023
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minimum-area ellipse covering 95% of the landing points.31,32 To compare landing point locations, we computed the Euclidean

distance between the centers of these ellipses. Statistical significance of these measures was determined by comparison to an

empirical null distribution computed by trial shuffling (100 draws).

Decoding
We tested two decoding strategies to identify single-trial trajectories based on the task-driven influences, a similarity decoder and a

maximum likelihood decoder. For both decoders, the HN and EF consensus covariance ellipses were estimated by pooled drift

segments but omitting the trials to be decoded.

For the similarity decoder, the single-trial covariance was estimated based on 300ms of drift segment. The decoder then assigned

the trials based on the least distance (Equation 1) between the normalized single-trial covariance and the normalized consensus HN

or EF covariances.

The maximum likelihood decoder identified single-trial trajectories based on the estimated log-likelihood of the single-trial drift

velocities ( v!) emerging from the distribution of either the HN or EF velocity distribution. This in turn was determined by considering

each of the measured velocities in the trial to be decoded as independent draws from a Gaussian with the consensus covariance

matrix (CHN or CEF ). For example, the probability that a velocity v!j is drawn from the HN distribution is given by

PHN

�
v!j

�
=

1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCHNÞ

p e
� v!T

j C� 1
HN

v!j
2 ; (Equation 3)

so the log likelihood for a velocity sequence v! = f v!1;.; v!Ng is given by

1

N
log pð v!jCHNÞ = � logð2pÞ � 1

2
logðdetðCHNÞÞ � 1

2N

X
j

�
v!T

j C
� 1
HN v!j

�
: (Equation 4)

Identifying a shared coordinate transformation underlying changes in covariance ellipses
As described above, the strategy for comparing the drift velocity distributions in HN vs. EF conditions is to compare their normalized

covariances CHN and CEF , which was done by computing C� 1
HNCEF and then determining the distance between this matrix and the

identity matrix. To test the possibility that the different covariance changes observed in each subject resulted from the same basic

coordinate transformation, but with each subject applying it in different amounts, we proceeded as follows. First, we note that a co-

ordinate transformation Z, where Z is a potential combination of rotation, stretching, and scaling, results in a transformation of the

covariance CHN to ZTCHNZ. To formalize the idea of varying amounts of the same coordinate transformation, we define the infinites-

imal of the transformation Z as a transformation L for which Z = eL. In this way, the set of coordinate transformations esL can be

viewed as the transformations that result from applying Z with variable strength: the original Z = esL for s = 1, and Z2 = esL for

s = 2, the result of applying the transformation Z twice. More generally, esL is the result of applying the transformation Z s times,

and esL is meaningful even when s is not an integer.

With this in mind, we sought a coordinate transformation L common to all subjects, along with values of the strengths sk specific to

each subject k, that minimized the total of the squares of the distance between the subject’s observed covariances CHN;k and the

subject’s observed covariances CEF;k , after transformation of CHN;k by eskL. To treat the two conditions equally, we implemented

this by applying half of the transformation to the HN ellipse
�
e

sk
2 L
�T

CHN;k

�
e

sk
2 L
�
and half of the inverse transformation to the EF ellipse�

e
� sk
2 L

�T
CEF;k

�
e

� sk
2 L

�
, and then carried out a nonlinear optimization that minimized the sum of squares of the distances defined in

Equation 1 between them (the ‘‘residual dis-similarity’’). The results of this calculation are shown in Figures 4C and 4D. Since the

overall size of s and L trade off, we added the requirement that trðLTLÞ = 1.

A challenge in evaluating the statistical evidence for a shared transformation is the lack of an a priori model for the repertoire of drift

patterns that a subject can make. We therefore resorted to an exceedingly conservative hypothesis: that each subject’s repertoire of

covariances for each condition is limited to the anisotropy we observed, and that the ability of a subject to shift their covariance was

limited to the observed changes between tasks. Based on this hypothesis, we generated surrogate data in which covariance patterns

were randomly associated with each task. We then used these surrogate datasets to assess the likelihood that a shared transforma-

tion would reduce the dis-similarity by the amount we observed in the actual data (Figure 4D). Specifically, surrogate datasets were

generated by random application of threemanipulations within each subject: swapping the covariance ellipses between the two con-

ditions, rotation of the two ellipses by the same amount, and mirroring the ellipses across the y-axis. For each surrogate dataset, we

determined the shared transformation and then computed the reduction in dis-similarity that it accounted for. Remarkably, even with

this exceedingly conservative approach, the observed consistency across subjects (i.e., the reduction in dis-similarity due to the

shared transformation determined from the actual data) was found in only 14% of the surrogate data – strongly suggesting the pres-

ence of a shared transformation, given the overly stringent nature of the test.
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A standard model of RGCs
In Figure S1D, we simulate the neuronal activity elicited in the early visual pathway by the retinal stimuli using previous published

spatiotemporal receptive field models of RGCs.33–37 These models specify both spatial and temporal filtering properties at the

LGN level that transform the retinal input into a firing rate. The receptive field model (K) contains the center and surround, each

with its own separable spatial and temporal components.36

Kðx; y; tÞ = Fcðx; yÞGcðtÞ � Fsðx; yÞGsðtÞ (Equation 5)

The center and surround spatial profiles Fc or Fs are described by a 2D circular Gaussian distribution:

Fðx; yÞ = Ce
�ðx2 + y2Þ

2ps2 (Equation 6)

The parameters (C & s) were taken from experimental recordings in macaque monkeys and typically differ for center and sur-

round.35 Following the work of Victor in 1987,37 we use a series of low-pass and high-pass stages with transfer function to describe

the temporal filtering properties.

~GðuÞ = Ae� iuD

�
1 � Hs

1+ iuts

��
1

1+ iutL

�NL

(Equation 7)

The parameters (A;D;Hs;ts;tL;NL) were taken from experimental recordings inmacaquemonkeys and typically differ for center and

surround.33,34 See Lin (2022) for more details of the model.38
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