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The assessment of skeletal maturity is crucial for the analysis of growth disorders and plays
an important role in paecdiatrics. For this reason, several methods have been developed for
estimating skeletal maturity. Among them, the Tanner and Whitehouse method (TW2), which
is based on the analysis of hand radiographs, is usually considered the most accurate and
reliable. Nevertheless, TW2 is applied only in a smail fraction of cases, due to its complexity
and long examination times. Thus, the development of automated systems which reliably
implement this method is highly desirable. However, major difficulties have been found in
the development of computer-based systems for the assessment of skeletal maturity. In particu-
lar the extraction of the bones of interest has proved to be extremely challenging. In this
paper, we propose a system architecture for the implementation of the TW2 method, which
is based on artificial neural networks. For each bone considered, the maturation stage is
determined by means of a two-step process which first locates the position of the bone in
the radiograph and then analyzes the bone shape. Experimental results obtained with our
implementation of the carpal version of TW2 arc in good agreement with those provided by
trained observers. © 1995 Academic Press, Inc.

1. INTRODUCTION

The assessment of skeletal maturity is crucial for a proper diagnosis and
treatment of growth disorders and is an important clinical tool in pediatrics. As
already pointed out by several researchers at the beginning of this century (7,
2), the skeleton shows maturational changes which occur continuously from
intrauterine life to full maturity. On the grounds of these findings, several methods
have been developed for evaluating skeletal maturity, which are based on the
measurement of the development stage of sets of bones.

The most commonly used methods are based on the analysis of radiographs
of the left hand. The most accurate of these is commonly agreed to be the method
developed in the early *70s by Tanner and Whitehouse (3) (TW2 method), which
operates on a selected set of bones of the hand.

However, as shown by a statistical analysis of examinations performed in the
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United States (4), the Tanner and Whitehouse method is usually applied in no
more than 20% of the cases, whereas in approximately 70% of examinations
more simple methods, such as the Greulich and Pyle atlas (3), are preferred.
This limited use of TW2, in spite of its superior accuracy, can be attributed to
the longer time required for examination and the greater complexity of the
method. In order to produce reliable results, a well trained observer is usually
required, and the maturity stages of several bones have to be carefully evaluated.

Automated computer-based systems which reliably implement the TW2
methed could find a wide application in hospital and clinical centers. In fact,
they could make it possible to achieve accurate estimates with considerable
savings of human time and work. Also, they could contribute to solving the
critical problem of performing comparisons among data from different institutes
by providing a standard measurement. Furthermore, they could be valuable in
the training of specialized personnel.

Recently, attempts at the development of such systems have been made by
many researchers. Different approaches have been proposed, involving two sepa-
rate phases of bone extraction and feature analysis. In the first phase, the radio-
graphic image is segmented and the bones of interest for the TW2 method are
extracted. The shapes of the bones and the features which significantly character-
ize the maturation stage are then analyzed in the second phase.

Due to the difficulties of accurately extracting the bones in X-ray images, most
of the works described in literature have focused on the problem of radiograph
segmentation, and many efforts have been made toward the development of
reliable techniques.

Both edge-based (6, 7) and region-based (8) approaches have been attempted,
often including a priori knowledge on the possible shape of the bones (9, 10),
but results have not always been satisfactory. In particular, as noted by Manos
et al. the use of edge-based methods is limited by the fact that, in medical
radiographs, boundaries are often weak and diffused, obscured by other tissues,
and subject to spatial and biological variability.

In addition, the phase of feature analysis presents serious difficulties as well,
because the shape of the bones has to be represented in a suitable way for
evaluating the presence of salient characteristics. An approach proposed by some
authors directly relates features which can be extracted more casily from a
segmented image (for example, the perimeter and the area of a given bone) to
the chronological age (11-13). However, the effectiveness of such features for
the assessment of maturity has to be proved.

Unfortunately, even if many studies have focused on specific aspects of the
problem, a complete and accurate system for the evaluation of skeletal maturity,
reliable enough to be used in clinical practice, is not currently available.

In this paper we propose a radically different approach to the problem of
automating the Tanner and Whitehouse method, and present a neural network-
based system for the assessment of bone maturity. Following connectionist meth-
odologies, knowledge about the typical shapes of bones during the various matu-
ration stages is stored in a set of neural networks, so that it is not necessary to
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explicitly extract and describe the salient features of the bones. In this way, the
phase of bone segmentation can be avoided. As a result, our approach overcomes
one of the major problems of other computational methods.

This paper is organized as follows: in section 2 we briefly summarize the most
common methods for evaluating skeletal maturity, with particular reference to
the Tanner and Whitechouse approach. The proposed approach is described in
section 3, and the neural network implementation, along with the experimentai
results, are shown in section 4. Finally, conclusions are drawn in section 5.

2. THE PROBLEM OF SKELETAL MATURITY ASSESSMENT AND THE TW2 METHOD

The evaluation of skeletal maturity is based on the presence and shape of
some calcified regions which significantly characterize the development of the
skeleton. In nearly a century of research, a large number of methods have been
developed which operate on the radiographic analysis of several parts of the body,

In the past, two lines of research have been pursued based on either

® the number of ossification centers present in the skeleton (chronological

methods) ot

& the maturation stages of a number of ossification centers in terms of shapes

of the corresponding bones (qualitative methods).

Only methods belonging to the second group are commonly in use, as they
require the acquisition of a small number of radiograms. However, some methods
of the first class are more reliable in special cases, such as for children younger
than 2 years old.

Qualitative methods are based on the analysis of the evolution of the shape
of short bones and the epiphyses of long bones. For each bone, a set of marurity
indicators, i.e., features and characteristics of the shape of the bone, which
“tend to occur regularly and in a definite and irriversible order” (5), have been
determined. The evaluation of maturity requires the identification of specific
discrete stages in the continuous process of growth. The most widely applied
methods operate on radiograms of the left hand and wrist, such as the one
illustrated in Fig. 1.

The atlas of Greulich and Pyle (5) is probably the most common method and
is based on previous studies by Todd (). It is a collection of radiograms chosen
on a statistical basis as prototypical radiographs, where all the bones show a
skeletal maturation stage which is typical for a given age. For each bone, a
specific maturity indicator is associated to each chronological age.

With such an atlas the examination implies the comparision of the radiogram
whose maturity has to be assessed, with the images of the atlas, in order to find the
one which best matches the input image. The age associated to the prototypical
radiogram selected is the estimated skeletal age, that is the chronological age at
which subjects usually present that specific ossification pattern.

The major problem with the Greulich and Pyle method stems from the fact
that the bones of the hand, even if they can often be considered as a single
entity, can have different maturity stages, which makes the comparison with a
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FiG. 1. Typical radiological image of the left hand and wrist used for evaluating skelefal maturity.

single pattern extremely difficult and arbitrary. That is, a degree of dismaturity
within the hand and wrist can easily occur, and some bones may well be ahead
of others even in normal healthy children. A second problem results from the
intrinsic accuracy of the atlas which is not high.

The technique proposed by Tanner and Whitehouse (3), overcomes all the
major problems connected with the atlas methods. The single match operation
is replaced by a multiple matches procedure, which determines the maturation
stage for each bone of a specific set. The average level of maturation is then
converted into a corresponding skeletal age. In this way, the maturation stage
of each bone contributes separately to the final estimate.

According to Tanner and Whitehouse a set of twenty bones of the left hand
and wrist can be used (TW2 method). The maturation of each bone has 1o be
evaluated by classifying the bone as belonging to one of eight (nine for the
radius) classes, usually labeled with letters A to 1. Figure 2 shows the maturity
indicators for the hamate.

In a second phase, the maturity indicator of each bone is converted into a
corresponding numerical factor by means of suitable correspondence (look-up)
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Fic. 2. Sequence of maturity indicators for the hamate,

tables. These scores have been evaluated through optimality criteria based on
the statistical analysis of the maturation process.

The sum of all the bone scores is used as a pointer in another look-up table
which gives the skeletal age. This final estimate depends to a different degree
on all the selected bones of the hand.

In addition to the classical TW2 method, which makes use of all 20 selected
bones, other reduced versions are available. By using different conversion tables,
estimates of the skeletal age can be carried out only on the basis of the seven
bones of the carpus (Carpal bone maturity) as well as on the radius, ulna, and
short bones (RUS maturity). For each bone, the procedure for evaluating the
maturity indicators is unchanged, only different look-up tables are used. All of
these versions are expected to produce equivalent estimates of skeletal age,
though the complete TW2 is usually considered more accurate due to its redun-
dance.

Since TW2 is a method for evaluating the maturation stage and not directly
the skeletal age, it can be easily adapted to different growth rates. For example,
it can be applied both to males and females simply making use of different look-
up tables. In general, even if the age associated with a particular maturation
stage can change for different populations, the sequence of maturity indicators
is always strictly followed. Thus, the extension of the method to other populations
requires only the production of suitable conversion tables. For istance, the adapta-
tion of TW2 to the Italian population is provided by Nicoletti et al. (14).

The evaluation of skeietal maturity by means of a single numerical factor
provides a measurement which is extremely convenient for statistical analysis.
It is worth noting that differences between the chronological and skeletal ages
up to two years could still be considered normal. For example, 68% of subjects
of 8 years of age have a skeletal age which ranges from 7 to 9, and they are
considered healthy even if the skeletal age is in the range of 6-10. However,
many different situations are possible depending on the pattern of maturity
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indicators, and the actual interpretation should be made by physicians on the
basis of their experience.

3. AUTOMATED ESTIMATE OF SKELETAL MATURITY: A SUBSYMBOLIC
APPROACH

The main difficulties in developing an automated system which implements
the TW2 method are related to the analysis of the maturity indicators,

To illustrate the problems which need to be solved, in Fig. 3 we show some
images of different maturation stages of the hamate, as well as some images of
the same bone at a given stage in different patients. As it can be noted, the main
differences among classes are due to modifications of shape and cannot be
attributed simply to changes of scale. Also, due to the intrinsic nature of the
growth process, the organization into a set of discrete classes is strongly artificial.
A continuum of intermediate configurations exists which makes the classes fuzzy.

In addition, radiograms are affected by several sources of noise: statistical
noise is generated for example by the imaging chain. Troublesome structural
noise is present, due in particular to the partial overlapping which is usually
present among the various structures under examination, as well as to soft tissue
shadows, which are characterized by a nonuniform gray-level distribution.

All these considerations suggest that very robust processing methods are
needed for a reliable computer implementation of the TW2 method.

3.1. Computational Architecture

As pointed out in the previous sections, the computational implementation of
the TW2 method imposes severe design requirements. In particular, we have
tried to meet the following global constraints;

Fii. 3. Different maturation stages of the hamate. (Left) classes E, F, G, and H. (Right) different
patients at level H.
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1. The system architecture should be flexible in order to allow the implementa-
tion of the different versions of TW2 method.

2. The acquisition of expert knowledge should take limited time and effort.

3. The system should be very robust producing classification results compara-
ble to those of trained operators.

The use of a modular approach based on separate processes for each bone
under consideration, integrated with an adequate control strategy, is probably
the simplest way to meet item 1.

Items 2 and 3 constrain the basic structure of the various subsystems as well
as the overall design scheme. Actually, knowledge acquisition is usually very
cumbersome and is one of the major drawbacks of symbolic knowledge-based
approaches. Furthermore, the knowledge involved in hand-bone classification is
fuzzy and depends on visual perception. For these reasons building a symbolic
knowledge-base about the shape of hand bones during the growing process is
hard, time consuming, and is expected to exhibit a large interobserver varia-
bility.

On the basis of previous experience about the use of artificial neural networks
(ANN) for visual tasks (75), we have decided to adopt a subsymbolic approach
for the assessment of skeletal maturity. The typical properties of ANN-based
systems have been widely documented by many authors (see, for example, (16)).
In particular the properties of learning from examples and producing fuzzy
representations, which are typical of ANN, are well suited for complex tasks
like those concerning visual perception (7). Trainable systems are adequate for
the acquisition of the a priori knowledge involved in medical-image understand-
ing. The expert has only to indicate and/or properly label the relevant features
in the pictures composing the training set. Since no explicit formulation of expert
knowledge is needed, this task can usually be achieved with a reasonable effort
using a suitable graphic interface.

It must be also pointed out that the learning procedure results in the adaption
of the system which, after convergence, stores, in a distributed fashion, the
prototypical knowledge embedded in the training set in its connection weights,
As pointed out by Hinton et al. (I8) distributed representations are often more
flexible, precise, and reliable as compared to local ones which are character-
ized by a one-to-one correspondence between concepts and representation ele-
ments.

Due to their intrinsic operation mechanisms, neural networks are expected to
provide an optimal use of acquired knowledge: for a given input stimulus, the
output is usually obtained by an efficient integration of the data stored in the
connection weights (which can be seen as a sort of knowledge base) with the
actual input. It is also worth noting that a strong noise immunity is typical of
neural systems. This is crucial to ensure an adequate system reliability.

On the other hand, neural networks usually impose a huge computational
load, and training algorithms often require long convergence times. However,
the use of a proper architecture can dramatically reduce the network sizes (19,
15). This usually produces also a considerable reduction of learning time.
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From a mathematical point of view, a supervised neural network can be seen
as implementing a mapping ¢ = fw{d) between two different vector spaces D

and C. This mapping depends on a set of parameters W = (wy,..., wg} which
are the weights of the network connections. That is,
fw:DCR'RCCR™ (1]

where R" and R™ are the n-dimensional and m-dimensional Euclidean spaces,
respectively. Given a suitable training set T composed by input/output pairs (d,
¢) where d € D and ¢ € C, learning can occur by modifying the weights W on
the basis of T according to specific optimality criteria.

In our case, dis a radiograph and ¢ is the corresponding vector of bone maturity
indicators (cy, ..., car) where M is the number of bones considered (20 in the full
version of the TW2). It should be noted that according to the TW2 method,
each ¢; can only have a discrete value (the 9 classes of the method), whereas in
the proposed neural network-based implementation they range in [0, 1]. Thus, the
problem of estimating skeletal maturity can be formulated as the determination of
vector ¢ in

fi(d) c1

f>(d) (5]
f(d) = =8

fM(d) Cum

where each function f; estimates the maturation stage of the i-th bone (the
dependence on the weight vector W has been dropped for notational conve-
nience). Actually, f; needs to process only a small subset of the data of the whole
image. Thus it can be assumed that it operates on a subset d, of the image d

fild) R cy,
Lld) R ¢,

C 2]

fM(dM) R cuy.

This has led us to adopt the system architecture which is schematized in Fig.
4. It includes two main subsystems: the attention focuser (AF), which, by localiz-
ing the bones, creates the subsets d;, and the bone classifier (BC) which imple-
ments the mappings f;. Basically, the BC subsystem includes as many ANN-
based modules (called classifier modules (CMs)) as the bones considered: each
CM classifies a given bone by estimating the corresponding maturity indicator.
The CMs operate on the portions of the input radiograph generated by the AF,
which locates the various bones and automatically extracts M windows, each one
centered on one of the bones considered (regions of interest (ROI}).

It must be pointed out that attention focusing is performed by processing the
entire image at a reduced spatial resolution. In fact, only large features of the
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FiG. 4. The proposed system architecture includes an attention focuser which selects the region
of interest of the input radiograph and a bone classifier which produces the estimates of the matu-
rity indicators.

bone (those in which low spatial frequency components are dominant) must be
considered. Small details are easily corrupted by noise, are heavily affected by
biological variability, and can be misicading. This allows a rather simple topology
of the AF as detailed in the next subsection. On the contrary, classification is
carried out at a higher spatial resolution with respect to attention focusing,
by processing a limited area of the radiograph. Obviously, small details can
considerably affect the classification task and cannot be neglected in this phase.
It should be clear that this strategy allows the optimization of the overall system
performances, since each CM has only to process those patterns for which it
has been implemented. Furthermore, it is possible to reduce the computational
burden, because there is no need for highly complex networks.

A further consideration is needed about bone classification. As discussed in
the introductory sections, classification must be primarily based on bone shape,
rather than on the gray-level distribution of the radiographs. The use of a band-
pass filtering, such as smoothed derivative operators, which removes the continu-
ous component, as well as the low-frequency background variability, is useful
for enhancing bone boundaries. Therefore, for each ROI, we compute the magni-
tude of the gradient of the original picture.

3.2. The Attention Focuser Subsystem

The AF (see Fig. 5) includes an input section we have called retina and a set
of focuser networks, one for each bone to be analyzed. The retina operates as
a two layer net: the first layer has as many linear units as the image pixels
(X X Y) connected to the units of the second layer which includes M X N units,
with M <€ X and N <€ Y. The weights of the connections between the two layers
are spatially arranged into overlapping, isotropic receptive fields, the profile of
each field being a bidimensional Gaussian distribution G(x, y) centered on each
output unit, with

1 2+ 2
G(x:)’) = FO‘ZCXP (_xzo_zy ) [3]

The output of the retina is a decimated version, with a Gaussian smoothing,
of the input radiograph with o = k max(X/M, Y/N), where k is a constant which
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Fi16. 5. The attention focuser locates the position of each bone in the input radiograph by estimating
the coordinates of the bene centroid.

determines the degree of overlapping of adjacent receptive fields. This image is
the input for i-th focusing network which provides the coordinates (X, Y;) of
the centroid of the i-th bone. Each of these nets (see Fig. 6) is feed-forward,
block-connected, and has four layers, with M X N input units, two hidden layers,
and M + N + 2 output units. The number of units of the first hidden layer is
determined experimentally, while the last two layers are split into two paths,
one for each coordinate, with M + 1 units for X, and ¥ + 1 units for Y,
respectively. The values of X; and Y, are represented by means of the following
sparse code:

M+1
M+1

N+1

N+1

Fic. 6. The topology of the networks included in the attention focuser.
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where x(i) is the output value of the i-th unit in the X; branch and y(j) is the
output value of the j-th unit in the ¥; branch (the operator {z] gives the maximum
integer p such that p =< z). In this way, x(i) where (x = 0,..., M) is maximum
when X; is equal to i{{ X/M), while two adjacent units code intermediate positions.
The same is true for v(j) where (y = 0,..., N).

The output of the network can be decoded as follows. With reference to the
x coordinate, let 7 be the index of the output unit with maximum activation value
and j be the index of the adjacent unit with higher activation (j € {§ —1,7 +
1}). The decoded value X is obtained as

I’+ s
x; zxrs (6]

j,’ =
where

X! =%{f+ (J— D —x(@O)} 7

x =340 = (G- D0~ x()

Similar equations hold for the coordinate y. Once the centroid coordinates (X, Y;)
have been computed, for each bone a predefined a X b window (the ROT) is
extracted from the image. The dimensions of the ROls are a priori set on the
basis of the average size of the bone considered.

3.3 Bone Classifyer Subsystem

The ROIs produced by the AF are processed by a dedicated CM. All CMs
include an input section and a classifying network, as illustrated in Fig. 7 The
input section is a retina with a X b input units and m X n output units and
includes two different types of oriented receptive fields which compute the two
components of a gradient of Gaussian; i.e., their profiles are
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F16. 7. Each classifier module processes the region of interest centered on the corresponding bone
and evaluates the maturation stage c; of the bone by means of a neural network.

x2+ 2 x2_+ 7z
~xexp (— zczy ),—y eXp(— = ) 8]

where o = k max(a/m, b/n). Afterwards, the magnitude of the gradient is com-
puted by summing up the squared outputs of the two groups of receptive fields.
Following this process, the gray levels are expanded to match the available
dynamic range. In this way, intense edges and/or areas with a high edge density
are strongly enhanced. A fixed number m of output units is adopted. Since the
size of the input ROI is variable, it results that large bones are processed with
a lower spatial resolution as compared to small bones.

The classifying network is a four layer fully connected feed-forward net with
m X n input units, two hidden layers whose number must be determined in the
implementation stage, and a number of output units equal to the number of
possible classes for the considered bone.

4. IMPLEMENTATION OF THE TW2 CArRPAL BONE METHOD

In order to test the performances which can be achieved with the proposed
approach, we have implemented the TW2 carpal bone method which is based
on the classification of seven bones of the carpus, namely the hamate, capitate,
triquetral, lunate, scaphoid, trapezium, and the trapezoid. According to the de-
scribed system architecture, we have designed and trained seven focusing net-
works and seven classifying networks, one for each considered bone. To this
end, we have collected 72 hand radiographs; 56 of them were used to train the
system and the remaining 16 composed the test set. Original radiographs were
digitized by means of a laser scanner into 850 X 640 X 12 bit pictures, using a
pixel size of 280 wm. All the radiographs were examined by an expert physician
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who evaluated the maturity indicator of each bone and computed the skeletal
age according to TW2 tables. The estimates performed by the specialist were
used as reference values in training the system, and the performances were
evaluated in compariscn with them.

As concerns the AF subsystem, special effort was dedicated to minimizing the
number of output units of the retina. We have found that with M = 18, N = 14,
and k = 0.33 in the o value, the overall system performances are still satisfactory.
All the focusing networks were implemented with an input layer composed by
252 (18 X 14) units and 34 (19 + 15) output units. The first hidden layer was
implemented with 18 units; this number was determined by experimenting with
different network topologies and selecting the simplest one (that is the one with
fewer units) (79). The ROIs generated by the AF were squares with a different
number of pixels for each considered bone, and they ranged from 61 X 61 for
the trapezoid (the smallest bone) to 95 X 95 for the capitate (the largest one},
as illustrated in Table 1.

For each CM, the size of the receptive fields of the retinas changed according
to the ROI dimension, by having a different value ¢. These values were obtained
so as to produce an output image with 400 pixel (m = n = 20). In this way, all
the classifier networks included 20 < 20 units in the first layer. The unit number
in the hidden layers was determined with similar considerations of the focusing
networks, by selecting the minimal net-topology, which produces satisfactory
results. The number of output units of each classifier network was equal to the
number of maturity indicators available for the bone considered in the training
set. The topology of the seven classifying networks is summarized in Table 2.

All the networks consisted of linear input units and hidden and output sigmoi-
dal units. The system was software implemented with a proper simulation pro-
gram written in C language. Supervised training was carried out by means of
the back-propagation algorithm (20). Since our final goal is to develop a system

TABLE 1

STRUCTURE OF THE ATTENTION FOCUSER MODULES

Bone ROI Network topology
Capitate 95 x 95 18X 14-18-19+15-19 + 15
Hamate 7 X 77 I8X14-18-19+15-19+ 15
Triquetral 67 X 67 18x14—-18-19+15-19+ 15
Lunate 63 X 65 18X1M4~-18-19+15-19+15
Scaphoid 77 X 77 18X 14 -18-19+15-19+ 15
Trapezium 69 x 69 18 X14-18—-19+15—-19+ 15
Trapezoid 61 X 61 1I8X14-18—-19+15-19+ 15

Note. For each bone, the size (pixel) of the ROT used for processing and the
topology of the related net are given. Each network includes 18 X 24 input
units, a hidden layer with 18 units, and two output paths {one for each coordinate)
having two layers with 19 and 15 units, respectively (see also Fig. 6).
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TABLE 2

STRUCTURE OF THE BONE CLASSIFIER MODULES

Bone Network topology
Capitate 20xX20-10-5-9
Hamate W0WXx22W-1W0-7-9
Triquetral 20X20-10-5-9
Lunate 20X20-10-7-9
Scaphoid 200X20-10-9-9
Trapezium 20Xx20-10-10~-9
Trapezoid WXx20W-10-9-9

Note. Each network includes 20 X 20 input units,
a first hidden layer with 10 units, a second hidden
layer with a variable number of units, and 9 out-
put units.

which can be efficiently used in a medical environment, without the need for
sophisticated and expensive hardware tools, we have run the programs on a low
cost CPU 80486 clocked at 33 Mhz. Training times have been fairly long, with
several hours of training for each network. The actual time required varied from
bone to bone, depending also, for the classifier networks, on the number of
maturity indicators present in the training set for each bone, However, once the
system is ready and all the networks are trained, the assessment of skeletal
maturity is very fast compared to the human operator; the evaluation of the
maturation stage of cach bone required less than 10 sec, most of which were
spent for simulating the receptive fields. The global estimate of skeletal maturity
with the carpal TW2 method can thus occur in less than a minute.

To verify the convergence of the training procedure, we preliminarily tested
the overall system using the radiographs of the training set. The system was able
to exactly replicate the reference values indicated by the physician. Then, the
real behavior of the system was analyzed by means of the test images, not
previously examined by the system. Table 3 shows the performance of the AF
subsystem, measured by the MSQ error in locating the centroid of the related
bone. It is worth noting that, even in the worst case, the ROI includes the
analyzed bone completely, the average error being 7.5 pixel for the X coordinate
and 4.8 for the ¥ coordinate.

Table 4 shows the results obtained by the BC subsystem for each classifier
module on the images of the test set. The rate of correct classification is about
65% (classification (a)). However, if errors between contiguous classes are ig-
nored, system performances reach 97% (classification (b)). The final estimate of
skeletal maturity provided by the system for the patients of the training set is
illustrated in Table 5, along with the estimates carried out by the physician. The
average difference between the two values is 0.62 years, with a standard deviation
equal to 0.58.
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TABLE 3

PERFORMANCES OF THE ATTENTION FOCUSER
MopuLes {PixeL UniTs)

Bone X ¥
Capitate B8 =58 5649
Hamate 82 %+ 59 45x4]1
Triquetral 7.0+ 6.1 5541
Lunate 8.0 x353 3835
Scaphoid 47 £ 49 42 = 31
Trapezium 98 + 75 7.5 * 64
Trapezoid 63+ 4.2 2922

Note. For each of the two coordinates (X, Y) of
bone centroids, the MSQ positioning error and its
standard deviation are given.

Systemn misclassification seemed to be related to the intrinsic fuzziness of TW2
categories. Indeed, estimation disagreements are commeonly encountered among
expert physicians. To clarify this point, we show in Tabie 6 the results of some
comparative experiments carried out by different experts. In two tests, the skele-
tal maturity has been estimated by different specialists on 10 and 8 radiographs,
respectively. These classifications have been compared with those of a senior
expert. As illustrated in Table 6, the two groups indicated the same classification
of the supervisor (classification (a)} only in 67 and 56% of the cases, respectively.
When classification errors between contiguous classes are disregarded (classifica-
tion (b)), these values rose to 100 and 94%. These results suggest that the behavior
of the proposed system is similar to that of trained operators.

TABLE 4

ESTIMATES OF THE MATURITY INDICATORS

Bone Classification (a) Classification (b)
Capitate 60 100
Hamate 75 100
Triquetral 80 100
Lunate 70 100
Scaphoid 60 93
Trapezium 40 95
Trapezoid 70 90

Note. For each bone, the rate of correct classification (a) and the
rate of correct classification ignoring errors between contiguous classes
(b) are shown (percentage values).
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TABLE 5

ESTIMATES OF THE SKELETAL MATURITY (YEARS)

Reference Estimated
Case No. age age
1 13.50 13.20
2 16.00 15.70
3 16.00 14.80
4 16.00 16.00
5 16.00 15.60
6 14.20 15.30
7 720 845
8 1530 14.70
9 9.40 9.50
10 15.70 15.70
11 16.00 14.50
12 16.00 15.60
13 6.80 6.45
14 16.00 15.40
15 16.00 14.30
16 13.70 13.85

5. CONCLUSIONS

It is commonly agreed that the TW2 method produces estimates of skeletal
maturity which are usually more accurate than other, widely used, methods. As
explained in section 2, this is mainly due to the fact that the TW2 estimate of
skeletal maturity is based on the shape features of a set of different bones rather
than on a single, global evaluation of the radiogram, as in the case of atlas-
based methods. The set of maturity indicators so obtained provides an accurate
representation of the growth process, which permits one to deal with inhomoge-
neities in the maturation stages of the various bones. Unfortunately, this is also
the source of the major limitations of this method. In fact, for each examination,

TABLE 6

RESULTS OF COMPARISONS BETweEEN HUMAN EXPERTS

Test Classification {a) Classification (b)
A (10 subjects) 67% 100%
B (8 subjects) 56% 94%

Note. For two groups of experts, we show in (a) the rate of correct
classification (with respect to a senior expert) and in {b) the same
rates obtained disregarding errors between contiguous classes.



SUBSYMBOLIC APPROACH TO SKELETAL AGE ASSESSMENT 255

the operator has to carefully classify a fairly large number of bones with long
execution times. In addition, the assessment of the bone maturity indicators is
a nontrivial task, and a specialist with considerable experience is needed to
produce accurate results.

Thus, the automation of the TW2 method is highly desirable, since it would
allow a much more extended use of the method and more accurate clinical
examinations. The system could be useful also in the training of specialized
personnel. Moreover it could provide a reference standard for statistical analysis.

However, the computational analysis of hand radiographs has proved to be
very hard, due to the complexity and variability which is typical of the growth
process. The various sources of noise that are present in the imaging chain, along
with the interferences among the shadows of the projected bones contribute to
making the task harder.

In recent years, artificial neural network techniques have been successfully
applied to many computer vision problems. Their properties of robustness, noise-
tolerance, and learning are very important for dealing with perceptual problems.
In particular, learning paradigms are well suited for the approximation of complex
multivariate functions. Clearly, this is relevant in those cases where samples of
the function are available for discrete sets of the independent variables, but the
function itself is difficult to formalize explicitly. This often happens in the analysis
of medical images, where the physician is able to provide quantitative results,
but the underlying perceptual and reasoning processes are in most cases unknown,.

In this work, we have faced the problems involved in the computational analysis
of hand radiographs and developed a neural network architecture for implement-
ing the TW2 method. We have proposed a simple modular system which, in
principle, can be applied to any version of the TW2 method. Preliminary results
obtained with the carpal version of TW2 are extremely encouraging.

We are presently working on the implementation of the complete TW2 method
based on twenty bones. We believe that, thanks to the higher redundancy of the
data set, even more accurate results will be achieved, without a significant increase
of the computational load.
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