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Abstract. The capability of autonomously discovering relations between perceptual data and motor 
actions is crucial for the development of robust adaptive robotic systems intended to operate in an 
unknown environment. In the case of robotic tactile perception, a proper interaction between contact 
sensing and motor control is the basic step toward the execution of complex motor procedures such 
as grasping and manipulation. 

In this paper the autonomous development of cutaneo-motor coordination is investigated in 
the case of a robotic finger mounted on a robotic manipulator, for a particular class of micro- 
movements. A neural network architecture linking changes in the sensed tactile pattern with the 
motor actions performed is described and experimental results are analyzed. Examples of application 
of the developed sensory-motor coordination in the generation of motor control procedures for the 
estimate of surface curvature are considered. 
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I Introduction 

Humans are able to perform an enormous 
variety of motor actions without any particu- 
lar conscious efforts. They can reach for ob- 
jects located in critical positions while avoid- 
ing collisions with other objects, and they can 
properly grasp and manipulate objects and tools 
which differ tremendously in their shape, dimen- 
sions and physical as well as functional proper- 
ties. There is no doubt that such performances 
are the result of the combined operation of 
several highly sophisticated subsystems. From 
a mechanical viewpoint, the human manipula- 
tive "tools", such as the arm and the hand, 
are characterized by a high spatial redundancy 
provided by a large number of degrees of free- 
dom, which allow them to reach any point in 
space by many different postures of the system, 
so as to adapt to different conditions. Further- 
more, both the conditions of the environment 
and those of the body are constantly monitored 
by an extremely large number of sensing ele- 
ments, which provide the brain with real-time 
information of the events occurring in the scene. 

The combination of perceptual and motor sys- 
tems results in an accurate sensory-motor co- 
ordination which is adaptable to functional and 
physical changes of the body such as variations 
in the power of the muscles and in the dimen- 
sions of the limbs. 

Let us consider, as an example of such com- 
bination of perception and action, a common 
operation such as handwriting. At any time, 
the data provided by the tactile, the visual and 
the proprioceptive systems are analyzed by the 
brain so as to adapt the motor behavior to the 
different conditions determined by pens which 
can differ in weight, size and smoothness. The 
perceptual systems monitor, by their different 
sensory modalities, the same physical events so 
that a high degree of redundancy is present in 
the inflowing data. As a result of this inher- 
ent redundancy, the system can still partially 
operate even if one of the sensory modalities 
involved is eliminated or degraded, such as when 
we attempt to write with our eyes closed or by 
wearing a thick glove. 

Understanding how different perceptual data 
are associated into a unitary perception of the 
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environment, and how sensory frames are co- 
ordinated with the motor ones, are among the 
most difficult problems that neurosciences have 
encountered, and they are still open questions. 

Nevertheless, evidence accounts for the de- 
velopment of these coordinations by means 
of learning (Piaget 1976). For example, ex- 
periments with the kittens have shown that 
visually guided behavior emerges only if sen- 
sorial changes in the environment are system- 
atically related to the motor actions performed 
(Hein 1974). 

In recent years, the problem of sensory-motor 
coordination has received some attention in 
robotics, after the observation that interaction 
with the scene can provide useful information 
for overcoming perceptual difficulties. As re- 
search in the field of visual (Bertero et al. 
1988) and tactile (Pati et al. 1992) percep- 
tion has shown, some low-level problems are 
ill-posed in the sense of Hadamard, that is they 
are underconstrained and do not have a unique 
solution, unless a priori assumptions are formu- 
lated (Tikhonov and Arsenin 1977). It has been 
shown that by means of an active approach most 
of these problems can be transformed into well- 
posed and stable ones (Aloimonos et al. 1988, 
Bajcsy 1988). 

In order to be effective in unknown envi- 
ronments, autonomous robotic systems have to 
produce adaptive sensory-motor coordinations 
similar to those of living beings. That is, they 
should be able to adapt their behavior to un- 
predictable modifications of their own functional 
structure due to aging and failures. 

The difficulties which are often encountered 
in the mathematical modelling of physical sys- 
tems, as well as the need for real-time learning, 
account for the use of neural network paradigms 
for the development of adaptive control. In par- 
ticular, several neural network paradigms allow 
real-time learning without the need for separat- 
ing operative and training phases (Maren et al. 
1990, Simpson 1990). 

Different neural network approaches to adap- 
tive sensory-motor coordination have been at- 
tempted in recent years (Albus 1981, Grossberg 
1988, Sfinchez and Hirzinger 1992). Particu- 
lar attention has been paid to the problem of 

visuo-motor coordination, especially for the eye- 
head and arm-eye systems, and several system 
architectures have been proposed (Kuperstein 
1991, Gaudiano and Grossberg 1991, Mel 1990, 
Grossberg et al. 1993). In general, in visuo- 
motor coordination visual images of the me- 
chanical parts of the systems can be directly 
related to posture signals. This eventually al- 
lows the system to reach for the object that it 
sees (arm-eye coordination), or to properly shift 
gaze direction for looking at desired parts of 
the visual field (eye-head coordination). 

Much less work has been carried out on the 
development of similar kinds of cutaneo-motor 
coordinations between the tactile and motor 
modalities, mainly due to the fact that tactile 
perception is often considered as a less impor- 
tant sensory modality than vision, and that tactile 
sensors are still characterized by low reliability 
and by a number of technological problems. 

In our laboratory, we have pursued an ap- 
proach to tactile perception in robotics which is 
strongly inspired by the biological world, both 
in terms of sensor configuration and of tactile 
signal processing (Rucci and Dario 1993, Dario 
and Rucci 1993). In this framework we have 
developed a composite robotic fingerpad includ- 
ing different kinds of tactile sensors, and we 
have focused on the problem of building adap- 
tive cutaneo-motor coordination for autonomous 
robotics systems. To the best of our knowledge, 
the work described in this paper is the first at- 
tempt to describe a coherent approach to the 
development of adaptive cutaneo-motor coordi- 
nation in robots. 

The paper is organized as follows: the next 
section explains the importance of developing 
cutaneo-motor coordinations in robotic systems, 
and how such coordination can then be used 
for manipulation and exploration. Section 3 
focuses on the development of cutaneo-motor 
coordination and illustrates how Piaget's concept 
of circular reaction can be properly adapted to 
this special case. A neural network-based im- 
plementation of the architecture is described in 
section 4 for a system composed of a robotic 
fingerpad mounted on a manipulator, and the 
results are analyzed in section 5; finally, conclu- 
sions are drawn in section 6. 
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2 Why Develop Cutaneo-Motor Coordination 
in Robots? 

During the last two decades, research on arti- 
ficial tactile perception has mainly focused on 
the design and the development of new sen- 
sors, and a large number of technologies have 
been applied to the detection of contact in- 
formation (Dario and De Rossi 1985, Fearing 
and Hollerbach 1985, Nicholls and Lee 1989, 
Amato 1992, Howe and Cutkosky 1992, Howe 
and Cutkosky 1993). Thanks to these efforts 
a wide range of sensors have been developed, 
most of them able to catch a specific aspect 
of available tactile information, such as normal 
force, shear, or vibrations (Webster 1988, Russell 
1990). However, the problem of interpreting 
tactile signals and of using contact information 
for properly interacting with the surrounding en- 
vironment has not been considered until recent 
years (Allen 1987, Allen and Michelman 1990, 
Fearing and Binford 1991, Pati et al. 1992, 
Bicchi et al. 1993), mainly due to the fact that 
most of the developed sensors were, and still 
are, far from producing accurate and reliable 
measurements. Thus, not much work has been 
carried out, to date, on basic problems of tactile 
perception, such as the integration into a unitary 
perceptual frame of tactile information acquired 
with different sensors (Dario and Buttazzo 1987, 
Caldwell and Gosney 1993), and, more specifi- 
cally, on the integration of tactile sensations and 
motor actions (Bajcsy 1984, Howe et al. 1990, 
Dario et al. 1992, Tremblay and Cutkosky 1993). 

Motor control plays a major role in tactile 
perception, since touch is an intrinsically active 
sensorial modality. In general, in order to vol- 
untarily gather tactile information, the sensor 
must be brought in contact with the explored 
surface and contact position and forces must 
be properly adjusted. Furthermore, the use of 
touch as a source of information for exploring 
an unknown environment implies that the phys- 
ical structure and the posture of the system are 
taken into account. Only by means of such 
geometrical relationships can the spatial loca- 
tion of a stimulus be determined, and spatial 
structures be discovered, so as to build repre- 
sentations of the environment. Similarly, tactile 
explorative operations involving the execution of 
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Fig. 1. The intrinsic knowledge of the structural and func- 
tional relations of our own manipulative tools, allows us 
to predict changes in the perceived tactile stimuli resulting 
from the execution of motor actions. 

motor control procedures produce useful infor- 
mation on the explored scene, only if the system 
proprioceptive data are considered at the same 
time (Lederman and Klatzky 1987). 

The development of autonomous systems ca- 
pable of executing intelligent exploratory move- 
ments requires a thorough understanding of 
the interactions between touch and motor- 
proprioceptive modalities. Actions such as in- 
creasing the grasping force if an object slips 
away, or finely adjusting finger positions and 
pressures in a grasp, can be performed only if 
a strict relationship between tactile and motor 
modalities has been established first. Such link 
would allow establishment of an effective phys- 
ical and functional organization of the system 
and it is the primary step that an intelligent 
system should execute toward its perception of 
the environment. 

In order to better elucidate this concept, the 
example shown in Fig. 1 can be considered. 
Given the initial contact condition illustrated in 
Fig. l(a), our knowledge of the layout of tac- 
tile receptors in the skin and of shifts in spatial 
position resulting from the execution of mo- 
tor actions, allows us to predict that by moving 
the finger along the direction indicated by the 
arrow, tactile stimuli will shift toward the fin- 
gertip, as shown in Fig. l(b). Even if the actual 
sensed changes in tactile stimuli are dependent 
on the shape of the contact surface, spatial ex- 
ploration is made possible by underlying assump- 
tions about the connections among adjacent 
joints, their relative possible movements, and 
the organization of tactile receptors. In order 
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for a robotic system to keep its performances un- 
altered in time, such system-dependent assump- 
tions should adapt to any occurring modification 
due to aging or damages. It is the autonomous 
development of this kind of knowledge-which 
in our view is the basis of tactile perception-  
that is the focus of this paper. 

Once this kind of sensory-motor coordination 
has been developed, it can be used for gener- 
ating purposive, "intelligent" motor actions, by 
asking the system to produce sensory changes in 
the perceived tactile pattern instead of motor 
changes of its posture. That is, the motor ac- 
tion illustrated in Fig. 1 can be produced by 
requiring a shift of the tactile stimulus toward 
the fingertip. 

The development of this kind of coordination, 
allows a robot system to formulate of hypothet- 
ical predictions on how a sensed tactile contact 
will be modified by a motor action, which is a 
basic requirement for producing highly sophisti- 
cated motor operations, such as those involved 
in tactile exploration and in dexterous manipu- 
lation. Only if the system has a complete con- 
sciousness of its own structure and of its own 
motor behavior, can it extract useful contact 
information on the environment. 

This approach is very similar to the theory of 
visual servoing and extends the concepts pro- 
posed there (Weiss et al. 1987) to the sense of 
touch. The real-time motor control of a robot 
based directly on the results of its tactile percep- 
tual system has not been considered in robotic 
literature until very recently (Beger and Khosla 
1991, Sikka et al. 1993). In particular, the work 
of Sikka, Zhang and Sutphen explicitly extends 
the methods of visual servoing to the case of tac- 
tile perception and it presents several analogies 
to the approach proposed in this paper. How- 
ever, a non-adaptive task-dependent method is 
followed, whereas in this case, the focus is on 
the extraction of system-specific sensory-motor 
invariants. 

3 Autonomous Learning of Cutaneo-Motor 
Coordination 

As already pointed out in the introduction, 
most of the previous work on sensory-motor 

coordination has focused on the visual sensory 
modality. However, cutaneo-motor coordina- 
tion differs significantly from the visuo-motor 
one, due to its intrinsic dependency on the 
contacted surface. Tactile information is not 
passively irradiated by the environment as is 
visual information, but must be gathered by ac- 
tive contact exploration. As a consequence, the 
direct association of tactile sensations with the 
mechanical positioning of robot parts is not fea- 
sible, because an environment-dependent tactile 
pattern is sensed for each system position. That 
is, a given tactile pattern can be perceived in any 
position of the space, and in addition the sensed 
tactile pattern may change with the touched sur- 
face for any posture of the system. 

A truly effective robotic sensory-motor coor- 
dination involving the sense of touch should be 
able to eliminate the environmental dependen- 
cies, in order to emphasize the intrinsic char- 
acteristics of the system. That is, the system- 
dependent invariants of the cutaneo-motor co- 
ordination, should be extracted. 

In this paper, the case of a robotic finger en- 
dowed with a sensitive fingerpad is considered. 
Fig. 2 shows the possible movements that the 
finger can perform with respect to the contact 
surface. A basic qualitative distinction can be 
carried out between movements along the vari- 
ous degrees of freedom: whereas motor actions 
along x, y and "y are intrinsically exploratory be- 
cause they bring new regions of the surface into 
contact, movements along 0, a and z are mainly 
adjustment movements, which are allowed by 
the compliance provided by the rubber cover of 
the finger. Due to the resemblance of these 
latter class of motor acts with the finger po- 
sitioning and pressure adjustment that humans 
unconsciously perform when they come into con- 
tact with the environment, we have called them 
feature enhancement micro-movements. The dis- 
tinction among the two classes of movements is 
supported also by the observation that in the first 
case vision can be used in cooperation with tac- 
tile sensing for driving the motor actions of the 
system, whereas only tactile information is avail- 
able for feature enhancement micro-movements, 
because the surface of contact is occluded by the 
finger itself. 
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Fig. 2. Possible movements of the robotic finger with respect 
to an external surface. The reference frame is centered on 
the centroid of the contact and its cartesian axes are parallel 
to the principal axes of the finger. Feature enhancement 
micro-movements involve rotations of the finger along 0 and 
c~ and shifts along z. 
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Fig. 3. Typical changes of the tactile patterns sensed while 
performing feature enhancement micro-movements. (Top 
Row) Rotation along a. (Center Row) Rotation along 0. 
(Bottom Row) Shift along z. 

Changes in the sensed tactile patterns prod- 
uced by feature enhancement micro-movements 
are shown in Fig. 3. As shown in the figure, 
whereas the two rotations basically produce 
shifts of the contact area along perpendicular 
axes of the image, movements along z produce 
a corresponding variation of the width of the 
contact area. 

In order to begin to address the very gen- 
eral problem of cutaneo-motor coordination in 
robotics, in this paper we focus on the specific 
case of feature enhancement micro-movements. 
The robotic system we have considered consists 
of an anthropomorphic finger described in sec- 
tion 5 which has been mounted on a robotic 
manipulator. 

The psychological concept of circular reaction 
has been applied for the learning process. The 
circular reaction scheme has been proposed by 
Piaget (1976) to explain how visuo-motor coordi- 
nation can be achieved in humans. This scheme 
is based on the association of sensory data and 
randomly generated movements, so that coordi- 
nation develops as the eyes keep following the 
random motion of the arm. 

The extension of the circular reaction concept 

Random I tact i le 
Movements I data 
G e n e r a t o r l ~  Cutaneo-Motor 

Coordination 

Robot 
Proprloceptive 

System 

er ro r  

p 7 

® 

_I P 

Fig. 4. An extension of Piaget's concept of circular reaction 
to the case of cutaneo-motor coordination. The variations 
of robot proprioceptive data sensed during random motor 
actions are associated with the corresponding changes of the 
perceived tactile data. 

to tactile-motor coordination in a robotic sys- 
tem is shown in Fig. 4. The system can learn its 
eutaneo-proprioceptive coordination in a totally 
autonomous fashion (without any external in- 
tervention) if changes in the tactile pattern are 
systematically related to the motor signals pro- 
duced by the robot proprioceptive system when 
random motor actions are performed. The er- 
ror between the motor action estimated on the 
basis of the developing correlation and the ac- 
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tual movement performed can at any time re- 
fine the coordination, so as to adapt to changed 
conditions. 

By means of circular reaction the use of su- 
pervised learning techniques becomes feasible, 
because a measure of the error produced at 
any time is internally available to the system by 
comparing the estimates with data belonging to 
other sensory modalities. In this case, learning 
proceeds by using as reference signalsthe out- 
puts of robot encoders. However, it is worth 
noting that the system develops its coordina- 
tion autonomously, because no training signals 
are explicitly provided and the supervision of an 
external operator is not necessary. 

4 A Neural Network-Based Implementation 

The system we propose develops a coordination 
among the tactile and motor perceptual frames, 
so that the system learns to estimate the direc- 
tion of a feature enhancement motor action on 
the basis of the modifications perceived in the 
tactile contact. That is (see Fig. 2) the directions 
of movements along z, 0 and o~ are considered. 
The system architecture has been implemented 
by means of artificial neural network paradigms 
and the cutaneo-motor coordination has been 
learnt according with the circular reaction the- 
ory. Applications of this kind of coordination 
will be illustrated in the following section. 

A scheme of the architecture is shown in 
Fig. 5. As illustrated in Fig. 3 feature en- 
hancement movements along 0, a and z pro- 
duce modifications of the sensed tactile pattern 
which consist mainly of translations of the con- 
tact centroid and of changes of pattern intensity, 
respectively. Thus, the architecture includes a 
separate pathway for each degree of freedom. 
The system includes three feature maps . ~ ,  .~u 
and 5 rp composed of the units u~, u~, u~ and 
three motor maps 34% Ad ° and Ad z, which are 
composed of sets of weights wkS~, w~V and wkZP. 
The feature maps include N~, Ny and Np units, 
respectively, and each motor map is composed of 
the same number of weights as the correspond- 
ing feature map, that is Ns = N~, No = N u and 
Nz = N v. As shown in Fig. 5, the activation of 

Motor 
Maps 

Feature 
Map s 

,A 
Tactile ~ J /  

I Robot 
Controfler 

Fig. 5. Scheme of the neural architecture. Changes in 
intensity and contact centroid of the sensed tactile pattern 
are processed by separate maps and activate corresponding 
motor units which represent movements along the 3 d.o.f. 
(see text for details). 

each feature map 5 TM, ~'u and a "rp is transmitted, 
through the corresponding motor map, to the 
motor units us, uo and Uz, respectively. The 
activation of these units provides an estimate of 
the direction of the micro-movement performed 
along each degree of freedom. 

In order to examine how cutaneo-motor coor- 
dination is developed, let Tt be the initial tactile 
pattern, acquired for finger position Pt = (xt, yt, 
zt, Or, c~t, 7t), and Tt+l the final pattern after the 
motor action has been performed, that is when 
the finger has position Pt+t = (Xt+l,yt+l, zt+l, 
Or+l, c~t+l, "/t+l). The feature enhancement con- 
straint implies that z, y, and 0 do not change, 
that is xt+l, yt+l, and 7t+l are equal to zt, yt, 
and % respectively. 

First the two tactile patterns are processed 
so as to evaluate such basic features as the 
coordinates of the contact centroid (x~, y~) and 
the intensity of the pattern pt: 

iX~= 1 E ,j iT (i, j) 

l y~ = ~ ~~,j jT~(i, j )  

Pt = ~-,i,j T~(i,j) 
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Fig. 6. Weights in the motor maps before training (Left) 
and after several thousands iterations (Right). Weights are 
aligned along the horizontal axis (i.e. the abscissa increases 
with k), and their values are represented by the length of the 
corresponding vertical segment. The three motor maps are 
aligned one above the other, so that the Ad z is on the top, 
Ad" in the middle and Ado is on the bottom of the figure. 
Initially weights have random values, but, with training, a 
structured pattern emerges. 

[ ~ ~ Ei,j iTt+](i,j) Xtq-1 ~ Pt+l 

] ~ 1!_ Ei,j jTt+](i, j) Yt+l Pt+a 

( pt+l ~i,j Tt(i,j) 

(1) 

The pattern of activation of the units in the 
feature maps code the variations of the tactile 
features between times t and t + 1. 

---- Xt+ 1 -- X t 

C C C 
Yt+l -- Yt (2) 

Pt~l log 

Let U~, U~ and U~ be the activation values of 
P Their values are given the units uk, u~ and u k. 

by the following equations: 

U~ = A ~ e x p -  2o~ 

U~ A~exp-  2o~ (3) 

U~' Ap exp - (v-P~)~ 

where the constants are: 

X k ..~ Xsup-X~nf "t- Xin f 
Nz 

Ysup--Ylnl ..1_ Yinf (4) yk Nu 

+ Pinf P#, Np 

The constants Xsup, Xinf~ Ysup~ Yinf, Psup, Pin f de- 
fine the range of sensitivity of the feature maps. 
In this way, each feature map has a Gaussian 
distribution of activation and is sensitive to one 
of the extracted tactile parameters. In each 
feature map, the maximum activation value is 
registered for the unit whose activation constant 
is closest to the input feature difference. 

The activation value of each output unit is 
given by 

1 K-~Ny ~ OYTry Uo = N z.,k=l ~k "~k 
S z  1_ K-~Np . zprrp 

A~ Z.~k=l wk  u k  

(5) 

where A~, Ao, and A~ are suitable constants, 
chosen for normalization. The motor directions 
are then evaluated by comparing the activation 
of the output units with a prefixed threshold 
T: if the magnitude is greater than -r the mo- 
tor direction is indicated by the activation sign, 
otherwise it is undetermined. 

The weights in the motor maps are modi- 
fied after each movement of the finger, in or- 
der to improve system performance. An error- 
correction learning rule has been adopted. 

I w~;C(t + 1) = w~X(t) + E[S(at+l - at) - U~]U~ 
Oy 

wk (~ + 1) = w ~ ( t )  + 4s (0~+l  - o~) - uo]u~ 

[ w~'(t + 1) = w~'(t) + e[S(zt+, - z,) - U~]U~ 
(6) 

where S(x) is the function sign which gives 
+ 1 , 0 , - 1  according to the sign of its argument. 
Even if many different learning rules would have 
been possible, the one in equations 6 has been 
chosen mainly on the basis of its simplicity. Due 
to the gating terms, weights are changed so as 
to produce the desired output only when the 
corresponding units in the feature maps have a 
non-zero value of activation. 

The organization of the motor maps before 
and after several thousands iterations can be 
appreciated in Fig. 6. In each map, the length 
of i-th segment is proportional to the weight 
linking the i-th unit in the corresponding feature 
map to the corresponding output unit. As it 
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thermally thermistor 

Fig. 7. A section of the multifunctional tactile probe showing 
the location of the different tactile receptors. Piezoresistive 
receptors are based on semiconductor polymer technology 
and are characterized by a high spatial density and by a low 
frequency range of sensitivity (50-100 Hz) as primate SAI 
system. Three piezoelectric polyvinylidene fluoride (PVDF) 
bilayered film strips, embedded into ridges of the compliant 
layer, emulate the functionality of the RA system (Meiss- 
ner and Pacinian receptors) with a lower spatial resolution 
(the strips are only 40 microns thick) and higher frequency 
range (10-1,000 Hz). Thermal sensors are composed of a 
miniaturized thermistor and an associated heating resistance 
embedded in thermicalty conductive rubber, and are located 
between the ridges of the elastomer. 

should be expected, in the motor maps a spatial 
organization emerges which is basically sensitive 
to the sign of the differential tactile feature 
coded. 

5 Experimental Results 

The experiments have been carried out by means 
of a multi-functional robotic tactile probe (a 
robotic fingerpad), which has been developed in 
our laboratory as a basic tool for investigating 
artificial tactile perception in robotic systems. 

The fingerpad emulates the organization of 
the human tactile system (Dario et al., 1992, 
Rucci and Dario, 1993, Dario and Rucci, 1993) 
and it includes piezoresistive, piezoelectric and 
thermal tactile sensors, which, due to their in- 
trinsic properties, mimic primate Slowly Adapt- 
ing I (SAI), Rapidly Adapting (RA) and thermal 
systems of afferent fibers, respectively (Johnson 
and Hsiao 1992). 

A section of the robotic finger illustrating the 
layout of various sensors is shown in Fig. 7. Only 
the signals produced by piezoresistive sensors 

were considered for the experiments. Piezore- 
sistive sensing elements are organized in a space- 
variant array configuration (the ARTS Tactile 
Sensor) designed in our laboratory and man- 
ufactured by Interlink Europe 1. The sensor, 
shown in Fig. 8, includes a high spatial density 
central a r e a - a  sort of "tactile fovea"-Where 
spatial acuity is maximized, and a peripheral 
area where the density of the sensing elements 
decreases gradually from the fovea. This dis- 
tribution, which is similar to the layout of the 
receptors in the eye and in the human finger- 
pad, implements a trade-off between the width 
of the sensed field and the number of sensing 
elements, allowing one to obtain a larger tactile 
field with a fixed number of receptors. 

For the experiments the robotic finger was 
mounted on a PUMA manipulator. As il- 
lustrated in Fig. 9, tactile data scanned by a 
dedicated multiplexing unit, are communicated 
through a serial port to an 80486-based com- 
puter. The communication between the com- 
puter and the PUMA controller is also handled 
by a serial link. In order to avoid virtually dan- 
gerous conditions, contact forces are monitored 
in real-time by means of a Lord 30-100 Force- 
Torque sensor located at the robot wrist before 
the tactile probe. 

In order to build cutaneo-motor coordination 
which does not depend on the tactile pattern 
perceived, contact conditions relative to different 
curvature radii were obtained by means of a 
set of aluminum cones (see Fig. 10). In this 
way, by producing a contact with the major axes 
of the finger and of the explored cone kept 
perpendicular, the sensed pattern varies at least 
along one direction of the image, depending 
on w h e r e - a t  which height of the longitudinal 
axis of the c o n e - t h e  finger was located. A 
low angle (3 degrees) was used for the cones 
generatrix so as to assume a constant curvature 
along all the contact area. 

The system was implemented with 100 units 
in each feature map (N~ = Ny = Np = 100). 
Constant values were ~ = au = ap = 1 and 
A~ = Ay = Ap = 1 in eq. 3. Training was 
carried out with e equal to 0.05, and tactile pat- 
terns were pre-processed by filtering them with a 
gaussian filter in order to reduce sensor noise. 
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Fig. 8. The ARTS Tactile Sensor. (Left) Two piezoresistive polymerlayers with perpendicular conductive strips are placed one 
upon the other. An analog multiplexing scanning unit senses the polymer resistance at the strips intersection points with an 
image rate equal to 50 Hz. (Right) The spatio-variant layout of the sensing sites mimicks the nonuniform distribution of 
Merkel receptors in the human fingerpad. The sensor includes 16 x 16 sensing sites (corresponding to the intersection points 
of the conductive bars) which are located in an area of 2.92 x 3.07 cm 2. The spatial resolution varies from 1.8 mm in the 
fovea to 4.4 mm in the periphery, and can be used in a force range approximately equal to 0.1-20 N. 
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Fig. 9. The system experimental setup. All the communica- 
tions are performed by serial links, except the acquisition of 
force-torque data, which are transmitted through a parallel 
connection. 

The accuracy of the developed cutaneo-motor 
coordination was tested by presenting to the sys- 
tem variations in the sensed tactile pattern, and 
by comparing the estimated micro-movement di- 

rection with the one actually performed. Fig. 11 
shows that the learning error (which is the 
average number of errors on a fixed number 
of randomly generated test cases) decreased as 
training proceeded, so that after 4000 iterations 
the results illustrated in Table I (Fig. 12) were 
obtained. The data refer to the estimate of 
the direction of the feature enhancement micro- 
movement performed. For the three degrees of 
freedom, the rates of correct, wrong and uncer- 
tain (output unit activation lower than r)  de- 
termination are illustrated. These results show 
that a robust sensory-motor coordination has 
been developed which is characterized by low 
error rates. Also, it can be noticed that in criti- 
cal cases, instead of selecting a wrong direction, 
the system tends to produce an undetermined 
response. 

Furthermore, the spatial distributions of errors 
and uncertainties with respect to the magnitude 
of each feature change, which are shown in 
Fig. 13, account for the fact that wrong motor 
actions are typically performed only when the 
desired position has almost been reached. 

Two examples of how the developed sensory- 
motor coordination can be used for tactile explo- 
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Fig. 10. The robotic finger mounted on a PUMA manipulator and the cones used for the experiments. 
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Fig. 11. Development of sensory motor-coordination. The 
average number of errors performed by the system decreases 
with training. 

ration of the environment are provided herein. 
Both refer to the active estimate of the cur- 
vature radius of the contact surface. Tactile 
patterns were provided by the same cones used 
for acquiring the coordination. 

In the first set of experiments cutaneo-motor 

z 0 o~ 

Correct 82 94 96 

Uncertain 10 5 .6  3 .6  

Wrong 8 0.4 0.4 

Fig. 12. System performances. 

coordination was applied to the problem of 
transforming the currently sensed pattern into 
a target one acquired with different finger pos- 
ture and pressure. As emphasized in section 
2, such a capability plays a major role for fine 
manipulation and spatial exploration. By pur- 
posively changing the sensed contact condition, 
forces and postures of the fingers can be opti- 
mized according to the current task, which can 
be, for example, a particular kind of grasping 
operation or an explorative control procedure. 
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Fig. 13. Distribution of errors and indetermination with 
respect to feature changes magnitude (data are expressed 
in cm). 
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Fig. 14. Application of cutaneo-motor coordination to the 
classification of tactile patterns. System posture is iteratively 
refined, so as to increase the similitude between the input 
pattern and a prototypical tactile pattern selected by the 
planning module. 

Such a skill can also be used for improving the 
classification of the perceived tactile features, as 
illustrated in Fig. 14, by moving the finger so 
as to better exploit the range of sensitivity of 
the sensors. This approach was applied to the 
problem of curvature estimation. A set of tac- 
tile patterns were acquired at different heights 
of the cones, and surface curvature was classified 
as belonging to one of 10 classes in the range 
10-30 mm. Patterns were acquired with fixed 

standard conditions: the finger was positioned 
with its major axis perpendicular to the longitu- 
dinal axis of the cone, and with an inclination 
of 3 degrees, so as to follow the slope of the 
surface (this allows a contact with the center of 
the piezoresistive array). A pressure of 13 N, 
which was experimentally found to produce a 
good discrimination among different curvatures, 
was applied for gathering the signals. The pat- 
terns were then classified by means of a neural 
network composed of four, full-connected layers 
with 256, 8, 5 and 10 units, respectively. The 
network was trained with the back-propagation 
algorithm (Rumelhart et al., 1986). Thanks to 
the standard conditions of data acquisition, per- 
centages of correct classification observed on 
patterns not included in the training set were 
above 90%. 

The approach illustrated in Fig. 14 was ap- 
plied, as an illustrative example, by using a ref- 
erence database composed of a set of patterns 
representative of each class. For each curvature 
class, one of the training patterns of the classi- 
fying network was chosen as a prototypical pat- 
tern. Then, feature enhancement motor actions 
were performed, so as to increase the similar- 
ity between the currently sensed tactile pattern, 
acquired with random position and pressure of 
the finger, and a prototypical one. The basic 
control problem of the selection of the target 
pattern at any time was not addressed here, 
instead a simple control procedure based on 
the initial selection of the most similar pattern 
was applied. The sequence of motor actions 
was interrupted when an euclidean distance be- 
tween the patterns equal to or lower than 2 was 
reached, or after a maximum prefixed number 
of movements. Even with such a trivial control 
rule (the target pattern selected in this way is 
not always acquired with the same curvature ra- 
dius) a success rate of 74% was achieved. In 
general, given two tactile patterns correspond- 
ing to the same surface curvature, but acquired 
with different finger positions, it was possible to 
find a sequence of motor actions linking the two 
configurations in more than 96% of the cases. 

Once the cutaneo-motor coordination has 
been developed, surface curvature can also be 
estimated by evaluating the relations between 



Rotation 

50 

40 

30 

20 

10 
w w  - 

104 Rucci and Dario 

i i i 

0 2.5 5 7.5 10 

Curvature radius 

Fig. 15. Rotation along 0 (degrees) with different surface 
curvature (era). (Filled dots) The target shift of the contact 
centroid is reached. (Empty dots) Rotation stops for having 
reached the force threshold. 

the performed motor actions and changes in 
the sensed tactile patterns. It can be observed 
that the link between shifts of the contact cen- 
troid along the y direction and the amplitude 
of rotations performed along 0 depends on the 
curvature radius of the explored surface. Fig. 15 
shows such a relation for two different cases: in 
the first case, the finger is rotated until a pre- 
fixed shift along the y coordinate is achieved. In 
the second one, the motor action is interrupted 
for having reached a safety force threshold of 
20 N. The curves show that in both the situations 
the average rotation performed is dependent on 
the surface curvature. This fact can be used 
for the active estimate of surface curvature, by 
requiring the system to produce a desired shift 
in the y coordinate of the contact centroid. This 
translates into a corresponding activation of the 
units of the ~-Y feature map, which determine 
the direction of rotation through the activation 
value of unit uo. The average extent of rotation 
for both the cases of completed and interrupted 
movement can then be used as a measurement 
of surface curvature as illustrated by the values 
of the curves in Fig. 15. 

6 Conclusions 

Tactile information is crucial for developing 
robotics systems which are able to operate in 
uncertain environments. General-purpose effec- 
tive robots should be able to properly perceive 
if a contact with the surrounding world has been 
achieved, and to grasp, manipulate and analyze 
objects of interest, all operations that require 
tactile capabilities. 

In the last 20 years, research on robotic tac- 
tile perception has achieved significant improve- 
ments in the accuracy and reliability of tactile 
sensors and has produced sensors specific to dif- 
ferent contact information. Such sensors, even if 
far from producing highly accurate quantitative 
measurements, provide qualitative information 
which needs to be interpreted to give meaning- 
ful results. This is similar to the behavior of 
human receptors, whose responses seem to be 
far from systematic. 

We believe that using already available tools, 
intelligent autonomous systems can gather useful 
tactile information from the environment, and 
can build representations of the explored world, 
if they know first the physical and functional or- 
ganizations of their own systems. The discovery 
of such organizations implies the understanding 
of how sensory data and motor actions are re- 
lated, that is the development of sensory-motor 
coordination. 

In this paper, the problem of developing adap- 
tive sensory-motor coordination has been ap- 
plied to a simple robotic system composed of a 
single finger mounted on a robotic arm, and for 
a particular class of motor actions. However 
the approach is general and could in principle 
be applied to much more sophisticated systems, 
such as robotic dexterous hands. 

Even if the focus of the paper is on the devel- 
opment of a particular kind of cutaneo-motor 
coordination, it has been also shown that, after 
that the sensory-motor association has been es- 
tablished, "intelligent" purposive motor actions 
(such as those for estimating surface curvature) 
can be produced by searching sensory-and  not 
proprioceptive-changes. That is, a movement 
can be carried out by the system so as to pro- 
duce an expected desired change in the tactile 
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stimulation. This capability has a fundamental 
importance for achieving skilled manipulation 
and it is very strictly related to the concepts 
proposed by the paradigms of visual servoing 
and active perception. 

The experiments that we have shown are part 
of a general approach to robotic tactile percep- 
tion that we are currently following, which relies 
on the integration of tactile data acquired with 
different receptors, and on the active interaction 
with the scene based on the cooperation of dif- 
ferent modalities. Progress with this approach 
could not only become the basis for developing 
more adaptive robots, but it could also guide 
experimental analysis toward the understanding 
of human sensory-motor control. 
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