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Integrating Selective Attention
and Space-Variant Sensing in Machine Vision

C. Colombo, M. Rucci, and P. Dario

Abstract. Studies on visual perception have demonstrated that selective attention mecha-
nisms and space-variant sensing are powerful tools for focusing available computing re-
sources to the process of relevant data. In this paper an overall architecture for an active,
anthropomorphic robot vision system which integrates retina-like sensing and attention
mechanisms is proposed. Gaze direction is shifted both on the basis of sensory and semantic
characteristics of the visual input, which are extracted separately by means of a parallel and
serial analysis. An implementation of the system by means of optical flow and neural
network techniques is described, and the results of its application are discussed.

1 Introduction

During the last few decades, machine vision applications have often been ham-
pered by the need of processing huge amounts of data. This led to the common
belief that the major bottleneck in solving problems in vision was the computing
power and image acquisition facilities [17]. Yet, only a small fraction of the raw
image data may be relevant to the task at hand. That is, vision systems usually do
not need to understand the scenes with which they deal, but they only need
to extract the information required to accomplish specific tasks [7]. The idea
of a system that purposively selects among visual data the relevant information
and ignores irrelevant details is common to several recently proposed machine
vision paradigms (e.g., [2, 4]), and it is crucial when a real time performance is
required.

Specific mechanisms for data reduction and selection are also present at
different levels of the human visual system, and play a major role to dramatically
simplify visual computations. At the earliest stage of vision, the particular layout of
the receptors of the retina - which are organized into a space-variant sampling
structure including a high-resolution, small central fovea, and a periphery whose
resolution linearly decreases with eccentricity - yields a good compromise be-
tween spatial acuity and field of view [34]. The mechanisms of selective attention,
which allow for selectively processing simultaneous sources of visual information,
act at later stages of human vision. By means of attention, computational resources
are allocated to the processing of data included into a limited extent spotlight; the
spotlight can be shifted through the visual field and can vary in size [19, 28]. Due
to the space-variant structure of the retina, visual exploration in humans occurs by
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actively shifting the fixation point, so as to exploit the high-resolution capabilities
of the fovea [38]. Gaze control is mainly provided by attentional mechanisms,
even if it has been shown that the spotlight can be voluntarily shifted independ-
ently of eye fixations [14]. As already hypothesized in 1890 by William James,
attention can be drawn both by the sensory and semantic characteristics of a visual
stimulus [18].

Due to the fact that the processing power of current computers is still by far
lower than that of the brain, implementing similar mechanisms in machine vision
is extremely important towards the development of effective, real time systems.

Recently, the space-variant structure of the human retina has received the
interest of the research community, and a number of applications based on its
simulations have been described [37, 16]. Furthermore, a hardware sensor mim-
icking the geometry of the human eye has been designed and developed, and it has
been applied to bidimensional pattern recognition and motion estimation [32, 33,
35]. A few architectures have also been proposed, which attempt to replicate
selective attention in machine vision systems, by the use of multi-resolution image
data structures, or pyramids [29, 6, 10]. Data selection with such hierarchical
structures is the result of a coarse-to-fine search through certain paths of the
pyramids [7, 11, 27]. Also the concept of saliency map - a topographical map which
combines individual sensory outputs into a global measure of attentional
conspicuity, as first defined in 1987 by Koch and Ullman [21] - has been found
useful for the implementation of attentive systems in robotics [9].

So far, research on attention in machines has been based on traditional high-
resolution cameras, thus not exploiting the further data reduction advantages
achievable by space-variant sensing. Furthermore, apart from some speculative
considerations, the work has been focused either on the sensory (bottom-up) or the
semantic (top-down) characteristics of the input data, while their combined use
into a single architecture has been neglected.

In this paper, the integration of selective attention mechanisms and space-
variant sensing towards the development of a real-time anthropomorphic vision
system is proposed. The focus here is on merging both semantic and sensory cues
in order to achieve active gaze control with a robotic head. The architecture
includes a simplified saliency map, which is activated simultaneously by bottom-
up and top-down cues, as resulting from a parallel and a serial analysis of the visual
input, respectively. :

The system is designed so as to attend to different visual tasks, and to change
the way it interacts with the environment depending on them. The system imple-
mentation is based on a hybrid architecture, including neural and conventional
image analysis techniques, such as optical flow and edge extraction. Thanks to its
intrinsic modularity, the architecture is suitable to be expanded so as to include
different tasks and to be adapted to other requirements. In the present implemen-
tation, particular interest has been devoted to motion cues at the sensory level and
to object recognition at the semantic level, so that the head is able to foveate on and
explore moving objects, which can be eventually recognized as far as they are
already known to the system. As the system’s goal is to control the motion of the
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sensors according to a predefined task, the architecture proposed in this paper can
be included in the active vision paradigm [1, 3].

The paper is organized as follows: in Sect. 2 the system architecture is pre-
sented and theoretical issues are discussed, then in Sect. 3 implementation details
are provided and the results of a simulation of system behavior are described.
Finally, in Sect. 4 conclusions are drawn.

2 The System Architecture

A general scheme of system architecture is shown in Fig. 1. This includes a robotic
head including retina-like sensors, two modules for visual analysis and an atten-
tion controller. A basic assumption of this scheme is that shifts of attention are
always accompanied by corresponding movements of the sensors, i.e. that the
attentional spotlight is kept centered on the fovea. Due to this constraint, control-
ling attention also implies gaze control.

The system is organized as a loop. The raw image data coming from the whole
visual field of the space-variant sensors are analyzed by a parallel processing
module, and a set of salient locations of the image space (sensory cues) which are
candidates for drawing attention are produced. At the same time, the visual region
covered by the attentional spotlight is analyzed by a serial processing module,
which produces semantic cues as the result of knowledge-based expectations. The
role of the attention controller is to combine current proprioceptive data and

Task

Serial Semantic i
= Analysis Cues Head and sensors

Attention =1
Control

Gaze Direction

= Analysis Cues

Parallel Sensory T

Proprioceptive Data

Visual Data

Fig. 1. The system architecture. Sensory and semantic cues are the result of a parallel and
serial analysis of raw image data. The new direction of gaze is selected by the attention
controller on the basis of the task at hand
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salient cues so as to activate, also on the basis of the current task, a simplified
version of the saliency map. Gaze direction is selected as the map location with
maximum activation,

It is worth nothing that, as far as attention control is concerned, no formal
distinction is made between sensory and semantic cues. These typically alternate
in drawing attention. In face, after the detection and localization of a sensory
relevant region of the visual field, movements of the eyes play an important role for
its analysis and classification.

A number of theories of visual recognition have been proposed, based on
the sequence of gaze directions [26, 25, 38]. According to these theories, the
system performs recognition by serially looking at different parts and features
of the examined object. The identification of a feature which characterizes a
known object can stimulate the system to look in different directions searching
for other features of that object, so as to better assess object identity. To this
aim, the system incorporates a fragmentary representation of the objects to
recognize. ,

The way the system responds to visual input changes according to the task at
hand. That is, on the basis of the task, a priority can be assigned to different visual
features.

In the following paragraphs, a detailed description of the elements of the
architecture is given, in the case of a monocular implementation.

2.1 Head and Retina-Like Sensing

The sampling structure for retina-like sensing is shown in Fig. 2. The periphery
around the central fovea is partitioned into M annuli X N angular sectors. The ratio
of the outer and inner radii of each annulus is equal to a constant a > 1. By suitably
scanning the sensing elements, the retinal periphery space (x, y) can be mapped
onto a cortical plane (&, y) by means of a log-polar (or retino-cortical) transforma-
tion [33). Figure 3 gives an example of a space-variant image representation in
both the retinal and the cortical planes. The log-polar transformation can be
analytically expressed as:

€=]0ga(\lx2 +)’2 )_P

1
Y =q arctan(y/x) )
where p and g are constants determined by the size and layout of the sensing
elements.
Figure 4 illustrates the geometry of a monocular head-eye system. In the case
of a space-variant sensor characterized by equation (1), the field of view is 26,
where
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fovea Fig. 2. The sampling structure of
retina-like sensing

annulus

periphery

angular sector

Log-polar
Transformation Cortical Plane

Retinal Plane

Fig. 3. Example of retina-like sensing. The objects imaged in the retinal plane (a cookie-box
and a mini-robot) undergo a strong deformation after the log-polar transformation that
maps them into the cortical plane. Notice also that image degradation is increasingly higher
moving outwards from the fovea

&= arctan(a**?/f ), (2)

and f denotes the focal length of perspective projection. The exponential term
allows one to achieve either a wider field of view than with traditional cameras, if
image resolution is kept fixed, or a reduction of the overall image data for a given
field of view.

Figure 5 shows an hardware implementation of the retina-like sensor, which
has been included in a binocular vision system recently developed at the ARTS Lab
[12].
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Fig. 4. The geometry of a monocular head-eye system. The two d.o.f. of the sensor are the
pan (¢) and tilt (6) angles. The head (fixed) and the eye (mobile) frame origins are assumed
here to be coincident

Fig. 5. Left: the CCD retina-like sensor built at IMEC, Leuven, Belgium. Several partners
were involved in the design and development of the sensor: DIST - University of Genoa,
Italy; University of Pennsylvania; ARTS Lab Pisa, Italy. Right: the robotic head developed at
the ARTS Lab. The system is composed of a mechanical unit which includes two retina-like
sensors, each actuated with two DOFs through DC servomotors, and a transputer-based
control architecture

2.2 Parallel Analysis

Figure 6 presents the schematic organization of the parallel analysis module. The
module includes as many pyramids as the number of different sensory features
that are candidates for drawing system attention - e.g., image brightness, color,
motion features, edge density, texture, etc.
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Fig. 6. Sensory pyramids and the Winner-Take-All mechanism at the parallel stage of
analysis

A sensory cue is produced for each pyramid as the result of a coarse-to-
fine search through all of its levels. All pyramids are scanned in parallel, and
at a generic level L a Winner-Take-All mechanism acts so that only one
“winner” is propagated to level L — 1, while “loosers” are inhibited [11, 36].
In such a way computations are greatly reduced, as only a small part of the
visual data is processed at high resolution, while the rest is explored only at
low resolution. The image coordinates of the Oth level winner of a pyramid
are delivered to the attention control module as the sensory cue for that
pyramid.

A characteristic of the pyramids used in this system is that they are built
on cortical images rather than on retinal images. Such hierarchical structures
will be referred to as “cortical pyramids.” Note that, since cortical images encode
only information from the periphery of the retina, data from the fovea are not
considered at the parallel stage, but their analysis is left to the serial analysis
module. Pixels in the retinal plane have nonuniform layout and dimensions - they
are in fact distributed according to a polar-exponential geometry. Nonetheless,
the corresponding pixels in the cortical plane are distibuted according to the
same Cartesian geometry as the pixels of traditional raster cameras, thus
allowing one to build up the cortical pyramids according to a classical algorithm
[6, 29]. That is, the generic level L + 1, L = 0 of the pyramid is constructed by
first smoothing and then subsampling by a factor of two in both the & and ¥
directions the cortical image at level L. As a result, as shown in Fig. 7, the new
level of the hierarchy can be interpreted in the retinal plane as a novel retina
with characteristic parameters M,,, = M,/2, N,,, = N,/2, a,,, = a}, p.., = pi/2,
Gy = q1/2. Figure 8 shows a three-level cortical pyramid, and the corresponding
retinal pyramid.

Note that, although constructing cortical pyramids has of course a smoothing
effect, which contributes to reduce the noise in the raw image data, sensory cues
are usually very noisy, and thus inadequate for a quantitative (absolute) analysis of
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Fig. 7. Left: building binary cortical pyramids. Right: backtransforming a cortical pyramid
yields a retinal pyramid: notice the presence of a hollow inner region corrensponding to the
fovea

Fig. 8. An example of cortical pyramid. Top: retinal plane. Bottom: cortical plane

the visual scene!. The system is though robust enough to exploit the information
present in the relative feature magnitude, and to draw attention to specific objects
that have to be recognized.

Note also that, as far as a b/w sensor is considered, sensory pyramids related
to features of increasing complexity can all be built starting from an image bright-
ness pyramid. This leads to a further simplification, in that pyramid level L for a

! A related problem is the generation of spurious cues produced by image noise, which could
produce gaze shifts to irrelevant visual directions. To avoid that, a simple thresholding
mechanism is used at the lowest level of each sensory pyramid, in order to discriminate the
signal from noise.
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Dog

Right leg

Fig.9. Left: the fragmentary representation used for object recognition is composed of a set
of icons having different levels of resolution, and linked by spatial relationships. Right: the
representation is implemented with a neural network which includes a set of feature units
(dashed circles) and an object unit (solid circle)

given sensory feature is actually constructed only when - and if - required by the
top-down search mechanism. In the Appendix, the case of motion analysis is
discussed, and the recursive construction of sensory pyramids for the optical flow
and related features - such as its first-order differential invariants and the imme-
diacy of collision - starting directly from cortical data is described. Such motion
features provide powerful cues for the attentive control of a robot head. They can
be effectively used to implement several different system tasks - such as searching
for specific kinds of motions (e.g., pure translations or rotations), shifting gaze on
the image feature with largest immediacy of collision, or pointing out the objectin
the scene with largest speed. In Sect. 3, some experiments are described in which
the parallel analysis is based on the optical flow magnitude and the immediacy of
collision.

2.3 Serial Analysis

As emphasized at the beginning of this section, semantic cues correspond to visual
field locations where characteristics of the hypothesized object are expected to be
found. The system includes a fragmentary representation of each object to recog-
nize. As shown in the left part of Fig. 9, an object representation is basically a graph
composed of fixed-dimension images (icons) reproducing different parts (or fea-
tures’) and views of the object at varying level of resolution. The icons are linked

*The term “feature” indicates in this paragraph a characteristic part of an object and should
not be confused with the sensory feature of the previous paragraph.
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by means of spatial relationships, which specify how they are located with respect
to other icons, and the relative dimensions of their features.

An object representation has been implemented in the system by means of a
neural network which includes a set of feature units linked to a single object unit
with excitatory connections (see the right part of Fig. 9). Each feature unit is
sensitive to a specific part of the object, that is to all the icons reproducing that
feature, and it acts as a cumulator, by storing and cumulating the activation
provided by a matching network. As shown in the figure, the spatial relationships
among the features are given with respect to the feature unit sensitive to the icons
centered on the object centroid and enclosing the whole object (reference unit).
For each object representation, the parameters (x, y;) and D; indicate the position
of feature 7 with respect to object centroid and the dimension that the attentional
spotlight should have for its examination, respectively. All the parameters are
given in the retinal space, and they are normalized with respect to the object size,
In this way, if the reference unit is activated when the width of the attentional
spotlight is equal to D, so that gaze is shifted, with respect to feature i by an
amount proportional to (x; D, y, D) in the image plane and the spotlight size is
correspondingly set to D; D..

Starting from each feature, the parameters for the examination of each other
part of the object are determined by following the graph and passing through the
reference unit. As will be explained later on, when required the spatial relation-
ships are estimated by a neural network so as to adapt to the actual orientation of
the examined object. The use of a scale-independent object representation allows
object recognition capabilities even with different focal lengths and object
distances.

All object units inhibit each other in a Winner-Take-All fashion, so that only
one of them has a positive value of activation at a given time, while all the others
are inhibited (output equal to zero). This is equivalent to the formulation of an
hypothesis on the identity of the observed object. In this terms, recognition is
intended as the eventual determination of a winning object unit.

The structure of the serial analysis module is illustrated in Fig. 10 - a prelimi-
nary of its application to a simple case of object recognition using conventional
sensors is described in detail in [30]. Image data are organized into a multi-
resolution edge pyramid, which represents image edges at different levels of reso-
lution. The pyramid is built on both data coming from the fovea and the periphery
of the sensor. The edges are extracted at the lowest pyramid level by a gradient
operator and data are then propagated at successive stages by means of Gaussian
smoothing. As shown in the figure, the pyramid is scanned by an attentional
spotlight centered on the fovea which, by moving through a “fovea-centered cylin-
der,” samples a fixed amount of information at different levels of resolution. As a
result, a trade-off is built between the resolution level and the spatial extension of
the considered area, and an increment of the width of the area implies a corre-
sponding decrement of the level of resolution at which data are examined. The
spotlight performs an expansion of the gray-level dynamic and produces a fixed
dimension attentional icon. By means of the expansion, parts of the examined area
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Fig. 10. The architecture for visual recognition (serial processing module)

with stronger edges and/or higher edge concentration are emphasized with respect
the others. When it is not involved in a recognition sequence, the spotlight scans
the cylinder from the bottom to the top of the pyramid. This is equivalent to
performing a radial expansion of the considered region, starting from the fovea
and moving towards the periphery. The resulting attentional icon is compared at
each time with all the icons included in the object representation. If a “semantic
match” is found, the pyramid scanning process stops and the spotlight dimension
is stored into a short-term memory (not shown in the figure). The size of the
attentional spotlight is later used for calculating the spatial parameters of subse-
quent fixations.

The attentional icon is matched in parallel with all the icons of the memory, so
as to activate hypotheses on object identity. Hypotheses are ordered according to
their plausibility and their are sequentially verified. Each verification involves the
serial analysis of all the parts and features of the hypothesized object so as to test
if other matches are achieved.

The matching process is carried out by a matching nef?, which is implemented
with the counterpropagation paradigm [13]. The matching network has as many
output units as are the features to identify, and each output is linked with the
corresponding feature unit in the object representations. As proposed by Kohonen
[23], the topological self-organizing map at the second layer of the net is trained by
means of an unsupervised learning process which requires the recursive presenta-
tion of patterns of the training set to the net. During the training, the weight
vectors of the maximally responding unit and those of its immediate
neighborhood are modified towards the input pattern, whereas the size of the
neighborhood and the parameters regulating weight changes decrease. The train-

’A “Weak perspective” projection model [24] is assumed here, thus avoiding significant
deformations of the peripheral parts of the foveated objects; such deformations could
seriously complicate the iconic representation.
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ing set includes all the icons reproducing the features selected for representing the
objects, extracted in a large number of images. By means of learning, the map
selects actually which icons to use for the representations on the basis of their
statistical relevance, and stores generalized versions of them in the first layer of
weights. In this way, the map self-organizes so as produce several disconnected
areas where units are sensitive to similar icons.

The spatial parameters are estimated by a locating net which is trained with
the back-propagation algorithm [31]. The network, illustrated in Fig. 11, includes
four full-connected layers of weights and it is split in two parts in the first layer,
where different input information are processed separately. The first set of inputs
has as many inputs as the feature units’ number. The number of input of the
second set is equal to the sum of the dimensions of the self-organizing map. Three
sets of outputs code, with a sparse coding, the coordinates of the spatial location of
the feature and the spotlight dimension required for its examination, respectively.
The locating net is trained so as to produce the spatial parameters of a feature
when the feature is selected with the first set of inputs, while the position of the
winning unit on the self-organizing map which activated the reference unit (stored
in the short-term memory) is specified with the second set. If a feature not corre-
sponding to the reference unit is examined, the location of the centroid and the
object size - i.e., the parameters needed for activating the reference unit in the
subsequent fixation - are found by coding the current winning position and
the desired feature. In this way it is always possible to reach a global analysis
starting from a detail, and to search then again for other details.

The basic strategy followed by the system for recognition is to examine
sequentially all the features of an hypothesized object. When a feature to be
analyzed is chosen, its spatial location and the spotlight size required for its

Self-organizing
Map
® 0 - ®
®
X
@ ®
Y
Feature D
Selection

Fig. 11. The locating network is a five-layer full-connected net, which has been trained with
the backpropagation algorithm to provide the spatial parameters of the representation
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examination are found by converting the numerical values provided by the locat-
ing net by means of the parameters stored in the short term memory. Recognition
is achieved if the global input to the object unit is larger than a predetermined
threshold. If an hypothesis fails to be confirmed by successive attentional fixations,
all the feature units in the representation of the rejected object are reset. In this
way, the second most probable hypothesis wins the competition and its features
are then analyzed. The cycle is repeated until recognition is achieved or all the
formulated hypotheses are sequentially examined.

2.4 Attention Control

The sensory cues generated by parallel analysis and the semantic cues produced by
the serial analysis activate spatial locations in the saliency map. The saliency map
can be seen as a not retinotopic plane including all visual directions. Each gaze
direction is represented in the map by the point identified by the spherical coordi-
nates 6 (co-latitude) and ¢ (longitude) relative to a head frame centered on the
focus of perspective projection - see Fig, 4.

Salient cues are expressed by the processing stages in retinotopic coordinates,
and they are transformed later into visual directions on the basis of the focal length
- sensor plane-eye coordinate transformation - and of “proprioceptive” data — the
relative rotation between the eye and the head coordinate systems - obtained from
the position sensors of the actuation subsystem. Specifically, if g, is a vector that
represents the next direction of gaze as expressed in the sensor coordinate frame,
its expression g; in the head reference frame, which has to be provided to the motor
subsystem, can be simply evaluated as

En = ﬁTng_‘, (3)

where the matrices §T and :T encode the homogeneous transformations between
the eye/head and between the sensor/eye frames, respectively - refer again to Fig, 4.

It should be noted that the set of directions of gaze explored by the sensor at
a given time is a subset of the map, whose size depends on the field of view. At
everytime, the activations provided to the saliency map (salient cues) are gated by
the considered task. That is, the task selects the level of priority for a generical cue
¢ by assigning it a weight w, € [0, 1]. By properly arranging the weight values, it is
possible to select a sensory feature with respect to others and/or to inhibit irrel-
evant cues. In this way, the task currently accomplished by the system changes the
way it responds to visual stimuli and, eventually, the way it interacts with the
external world.

3 Simulation Results

In this section, experimental results obtained with a simulation of the system
behavior are described and discussed. The simulation has been carried out on a
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SUN SPARCstation, with a program written in C. Space-variant images have been
obtained by resampling high-resolution 256 X 256 images acquired with a b/w
raster camera.

Three toy-objects, which are shown in the sequence of Fig. 12, were included
into the system memory for recognition: a dog, a train, and a cat. The icons were
circles of 156 pixels - approximately the size of the fovea - and they were classified
by a topological self-organized map composed of 400 units (20 units along each
axis). Each object representation included 5 feature units. The locating network
was composed of 55 (40 + 15) input units, 15 units in both the hidden layers and 15
(5 + 5+ 5) units in the output layer. A number of images for each object were used
to train the nets of the system: windows located on the representative features were
extracted from the images and their positions and dimensions were stored. The
topological feature map was trained by means of the icons corresponding to the
selected windows and the locating net with their spatial relationships. To achieve
a further computational gain, only the considered part - i.e., the attentional icon -
of the edge pyramid was produced.

The retina was composed of M = 64 annuli and N = 128 angular sectors, the
radii-ratio was a = 1.04621, and p was set to 43.32067. The field of view was
approximately 45 deg. Three pyramid levels were built in the cortical plane, using
a Gaussian-shaped smoothing filter with a mask size of 3 pixels. At the top pyramid
level, which was the only one to be completely processed, a data reduction of
approximately two orders of magnitude was achieved with respect to raster im-
ages. Two motion features were used as sensory features for the system: the mag-
nitude of the optical flow, and the upper bound on the immediacy of collision,

Fig. 12. Some frames
taken by the system at
work. Black dots indicate
the foveal region, that
surrounds the fixation
point
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obtained from the cortical flow and its derivatives using equations (5) and (9),
respectively - see Appendix. The cortical flow was computed on a three-frame
basis, by means of a motion-boundary preserving algorithm based on a
multiwindow least squares technique [5]. The cortical flow was regularized by a
vector median filter, having a filter mask size of 3 pixels.

In the following, an experiment illustrating the system behavior is described.
The three objects represented into the system were located in the scene, and
different motions were assigned to each of them. In a first phase, the dog ap-
proaches the camera, the cat goes away, and the train is still. After a while, the dog
stops and the train departs moving parallel to the camera. Task weights are as-
signed so that recognition has the highest priority (w, = 1.0), followed by imme-
diacy detection (w, = 0.6) and speed detection (w, = 0.2).

At the beginning, as shown in Fig. 12a, none of the objects is foveated, so that
no semantic cues are produced by the serial analysis stage. The results of the
parallel analysis are shown in Fig. 13a,b. As it can be noticed, the magnitude of the
optic flow field is greater for the cat than for the dog. Nonetheless, system attention
is drawn by the approaching dog, due to its larger value of immediacy of collision.
The train is not considered at all in this phase, because it is not in motion.

After the first foveation on the dog (Fig. 12b), a semantic match occurs, so that
a recognition sequence is activated. Figure 12c¢ shows the last of the four foveations
required for the recognition process.

While the system is involved in the recognition “scanpath,” the train starts
moving, but the corresponding sensory cue (Fig. 13c,d) does not gain the system

Fig. 13. Optical flow and
sensory features. Brighter
areas correspond to higher
feature values. Features are
as they would look if the
whole Oth level of the
pyramid was processed.
Actually, only the cues
indicated by the arrows
were computed




124 C. Colombo et al.

attention. However, after that object identity is assessed, no more semantic cues
are available and optical flow magnitude becomes the most prominent cue. As a
result, gaze direction is shifted to the train (Fig. 12d).

Other experiments have shown that recognition performance is good, in that
objects are correctly identified in more than 90 percent of the cases, all the errors
being due to the failing of the first semantic match during the pyramid scanning.

4 Conclusions

Studies on vicual perception have demonstrated that evolution has developed
powerful tools - such as selective attention mechanisms and space-variant sensing
- for focusing the available computing resources to the process of relevant data.
Implementing similar mechanisms in machine vision is extremely important to-
wards the development of effective systems. In fact, in spite of the great improve-
ments of the recent years, the processing power of current computers is still by far
lower than that of the brain.

The system described in this paper is an example of how biological theories
and concepts can be effectively exploited in machine vision applications. The
simultaneous use of selective attention mechanisms and retina-like sensing allows
a dramatical computational gain, which encourages complex real-time applica-
tions. Besides, the integration of sensory and semantic characteristics of the visual
data and the dependency on the task at hand are indicated as fundamental issues
for the development of an “intelligent” behavior.

Basically, two directions of future research can be outlined. On the one side,
other visual features and even other sensory modalities, such as touch and hearing,
could be included in the system processing stages so as to produce new cues for the
saliency map. On the other, the learning capabilities of the system could be im-
proved. By means of on-line learning, achievable among other techniques also by
different neural network paradigms, the system could be able to autonomously
select relevant features and to create new object representations.
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A Space-Variant Motion Analysis

In this Appendix, the case of motion analysis, and specifically the construction of
cortical pyramids for the optical flow and related features, is described.
Although defined as an approximation of the velocity field (%, ) - the projec-
tion onto the retinal plane of the tridimensional speed of the objects in the scene
relative to the sensor -, the optical flow of points of the retinal periphery can be
computed directly from cortical image data using the log-polar transformation (1).
Let us define the “cortical flow” as the optical flow-like field (&, ¥) arising due to
brightness changes in the cortical plane. This field satisfies the equation [15]:

a_E.+_a£'+a_E:0
P A T @)

where E (&, 7, t) is the cortical image brightness. Then, assuming that (él, 7) is the
cortical flow at a generic pyramid level L (the subscript ; from the retinal param-
eters is omitted for the sake of simplicity), the corresponding optical flow is
evaluated as

x= a&{(lna é) cos(y/q)— [éy] sin(y fq}:i
jfzaét{(]na 5'} sin(y;‘q)+(éf/] cos(}':'q):|. )
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In the same way - that is, by exploiting the retino-cortical transformation -,
other interesting motion parameters can be computed from the cortical flow pyra-
mid. The differential invariants of the optical flow, which are nothing but proper
combinations of the first spatial derivatives of the flow [20]:

. X 0)
divergence = a—+ o4
dx dy
dx )
curl=-Z 4+

dy ox

. N2 '} ) Y 1/2
shear = a—x—@i + £+§l , 6
dx dy dy ox (6)
are related to some simple geometrical and kinematic characteristics of the imaged

scene [22]. Using again equation (1), it can be easily shown that the optical flow
invariants can be computed from the cortical flow and its spatial derivatives as:

divergence=21na §:+—§§+g_¥
2. a& 1 ay
l==y—glha—=>+———%
cur! q}’ qnaay+qlna B’g'
: 2 . 2 12
o8 9y & 1 oy
h = —_— l 2 i .
shear [86 a}'] +(q na87+qlna 3 7)

Besides, simple linear combinations of the optical flow invariants can be
directly related to the immediacy of collision (the reciprocal of the time to collision,
or the time it takes before the object and sensor collide) and the cyclotorsion - the
rotational component of the sensor speed along the optical axis. If the field of view
is sufficiently small, these two quantities can be bounded by [8]:

i +
immediacy = dlvergen;;e +shear i
1+
cyclotorsion = Meﬂ_ =
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