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Abstract

As it occurs in humans, robotic systems should be
able to respond to unexpected tactile events by orient-
ing their visual attention toward the location of the
stimuli. This implies two basic problems: first it is
necessary to develop a general method for integrating
attentive processes which belong to different sensory
modalities according to the attended task. Then, for
the specific case of touch-driven shift of gaze, a senso-
rymotor transformation needs to be identified, which
links the stimulation of tactile receptors to the spa-
tial position of the camera, via the current posture of
the system. In this paper we describe a general frame-
work for integrating multimodal attentive mechanisms,
and we show how the visuo-tactile coordination can be
autonomously learnt on the basis of sensory consis-
tency and feedback. After the general presentation of
the method, we consider the case of a robotic system
composed of a 2 d.o.f. arm and a 2 d.o.f. head. Ez-
periments with this system show that it discovers its
own functional model without any external interven-
tion and adapts it continuously during normal opera-
tion. The approach gives good results while presenting
the advantages of autonomy and adaptability.

1 Introduction

Useful autonomous robotic systems need to operate
in real environments, dealing with unpredictable sit-
uations and huge amount of redundant sensory data.
Selective attention and learning are critical concepts
for the development of these systems: from one side,
attentive processes, as mechanisms which select the
relevant information for the accomplishment of the
task at hand, allow to deal with large flows of incoming
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data, and they can be crucial for overcoming classical
perceptual difficulties and achieving real-time perfor-
mances. From the other, learning capabilities allow
an adaptation to the surrounding environment, and
even the discovering of system specific functional and
structural characteristics, which may compensate for
possible alterations of the system components due to
damages or aging. In order to be effective, learning
should occur throughout all the operative “life” of a
system, and algorithms which require the existence of
a separate learning phase from the operative one can-
not be used.

Whereas selective attention, after having been
emphasized by several recent machine perception
paradigms [1, 2, 3], is currently the subject of an in-
creasing number of studies in the field of computer
vision [4, 5], attentive mechanisms related to sensory
modalities different from vision have been much less
studied. In particular, the class of processes related to
the sense of touch has been so far only superficially in-
vestigated, in spite of the importance of tactile events
for all the systems that physically interact with the
surrounding environment.

A typical situation where a somatosensory saccade
-i.e. a shift of the gaze direction triggered by a tactile
event- is needed in a robotic system, is when, during
a motor operation, an external obstacle is hit. In this
case, the visual system needs to be focused on the spa-
tial location of the collision, in order to assess the na-
ture of the obstacle and determine a new motor path.
The process by which the final gaze direction is esti-
mated involves the transformation of the tactile event
in a somatosensory reference frame into a correspond-
ing activation of the motors of the camera. Even if this
transformation can be estimated by means of an accu-
rate modelization process, the performance obtained
in this way is fixed and does not adapt to possible al-
terations of the system. Furthermore, the results are
highly dependent on the accuracy of the model, and
the method is not appliable if a good mathematical
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model of the system cannot be produced, such as, for
example, with highly nonlinear systems.

In this paper, we analyze touch-based attentive
mechanisms and we investigate their integration with
attentive processes belonging to other sensory modal-
ities. In particular, we consider the production of so-
matosensory saccades in a robotic system composed
of a monocular head and a tactile sensitive arm, by
following an approach based on machine learning.
The system autonomously discovers the sensorymotor
transformation which links tactile events to visual sac-
cades, on the basis of multisensory consistencies, sen-
sory feedback, and basic, built-in, motor reflexes. In
this way, it builds, without any external intervention,
a functional model of itself, which is continuously up-
dated and adapted during normal operation, through
on-line learning capabilities. In addition, there is no
need of having an initial model to refine, as in other
autonomous calibration method [6].

In the following section the architecture for inte-
grating multimodal attentive mechanisms is briefly
presented (a more complete description can be found
in [7]). The neural network implementation of the
sensorymotor coordination for the case of vision and
touch is presented in section 3, and robotic results are
shown in section 4. Finally, conclusions are drawn in
section 5.

2 An architecture for integrating mul-
timodal attention processes

Fig. 1 illustrates a general system architecture
for the real-time, task—based integration of attention
mechanisms operating in different sensory modalities
[7]. The system is organized in a sensorimotor loop:
the analysis of the incoming data produces a set of
possible gaze directions. Within this set, the actual di-
rection is selected on the basis of the absolute strength
of the stimulus and of its importance in the context
of the task. After that the shift of gaze has been exe-
cuted, a new set of interesting directions is generated
and is added to the previous one.

The logical center of the architecture is a modi-
fied saliency map S [8], whose location s;; represents
the saliency of a specific visual direction (¢;,%;) in a
absolute head-centered reference frame. All possible
visual directions are represented on the saliency map
and a monotonic mapping exists between the saliency
map and the motor of the cameras, so that, given a
specific location of the map, corresponding positions
of the cameras are determined. It is not required to
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Figure 1: The proposed architecture.

specify exactly which visual direction corresponds to
a specific map location. The actual transformation is
autonomously learned by the system so as to compen-
sate for inaccuracies and alterations of the mechanical
and optical systems.

Let D = {di,...,dm}, be the input perceptual data
to the system at time ¢ and P the current posture of
the system P = {pi1,...,pr}. As illustrated in Fig. 1,
sensory data are analyzed by a set of continuous-time

processes {h',... h"}, for each of the sensory modal-
ities.
o B
hH (DR PRy ={l5} = - 6
By oo Ihe

where each process acts on a subset of the input data
DF —typically belonging to a single sensory modality—,
and gives the saliency lfj € [0,1] for each location %, j
on the saliency map. Here R and C are the number
of units in each dimension for the saliency map. The
lfj > 0 are the attentive cues generated by process h*.

Note that, in addition to the perceptual informa-
tion, h* depends also on the posture of some parts of
the system, that is h* = h*(D* P*). For example, all
the processes that operate on visual data provide cues
located in the visual field, and the projection of the
visual field on the saliency map changes with the po-
sition of the eyes with respect to the head. In general,
each attentive process carries out the coordinate trans-
formation necessary for activating the head—centered
saliency map starting from data expressed in a sensory
reference frame.

All the processes contribute to activate the saliency
map, so that the final value assumed by element s;; is
given by
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Sij = Fu(Y_ whll) (2)
P

where F; is a nonlinear monotonic function (in the
experiments, a sigmoidal function has been applied)
in [0,1]. The attentive cues produced by processes
{h', .., h"} are candidates for drawing attention.
Several rules can be implemented for selecting the ac-
tual direction of gaze: the simplest is to choose the
direction corresponding to the unit with maximum ac-
tivation.

The dependence on the task at hand is produced
by the task weights wh.,

wr = (wh,wh, ..., wi)T wh € 0,1 (3)

which modulate the cues of each sensory process h*
accordingly to the attended task, so that at every time

N
S wh =1 (4)
k=1

In this way, a priority degree can be assigned to differ-
ent sensory features. based on the task. By properly
arranging the weight values, it is possible to select a
sensory stimulus with respect to others and/or to in-
hibit irrelevant cues.

3 A neural network-based implemen-
tation

Attentive processes h* link sensory reference frames
(for example, the activation of specific tactile receptors
or of pixels in the input visual image) to motor refer-
ence frames (gaze directions, i.e. corresponding posi-
tions of the visual system). Of course, such sensory-
motor transformations depend on the actual physical
structure of the considered system and on the current
position of the mobile components.

In this section, we describe how these processes can
be autonomously developed by means of unsupervised
learning mechanisms, by considering the specific case
of a system which includes a visual (h") and a tactile
(k) process.

Two different learning mechanisms act simultane-
ously in the system: before the execution of a shift of
gaze, the consistency among the cues produced by dif-
ferent processes is used for updating the sensorymotor
coordinations. If a physical event is monitored with
different sensory modalities, all the visual directions

produced by the corresponding processes should obvi-
ously be coincident. Their mismatches can be used as
a measure, which is internally available to the system,
for refining the processes. After the execution of a
motor action, learning occurs on the basis of sensory
feedback. For example, the foveation error detected
after the execution of a visual saccade can be used for
updating the sensorymotor transformations. Exam-
ples of application of consistency-based [9, 10, 11, 12],
and feedback-based [13, 14] learning mechanisms are
common in the neural network literature [15].

In the initial stage of development, an ezploration
task has been selected which gives priority to visual
stimuli with respect to the tactile ones, that is the
task weights are set so that the weight for visual cues
is larger than the other. In this way, visuomotor coor-
dination can be developed faster than cutaneomotor,
and the visual sensory modality can be used as a ref-
erence in the consistency-based learning process.

In the proposed implementation, two input sen-
sory maps C and R code the incoming tactile and
visual stimuli in a somatotopic and retinotopic refer-
ence frame, respectively. That is, both the maps show
a topological organization where units close to each
other are sensitive to stimuli occurring in adjacent lo-
cations of the receptors layout. T'wo input motor maps
M? and M?®, code at each time the position of the
system, as detected by proprioceptive data (the data
provided by robot encoders). In particular, M€ repre-
sents the posture of the parts of the system which have
tactile capabilities, and M" code the camera position.
The units of all the input maps are characterized by
gaussian receptive fields, so that the activation value
of each unit is a gaussian function of the distance be-
tween the input and a specific value for the unit. As
illustrated in Fig. 2, in both the sensory modalities the
input sensory and motor maps activate the units of a
three-layered sensorytopic columnar organization. In
the visual sensory modality each column is composed
of three units v;;, v? vfj located in the maps V, V¢

15
V¥, respectively. Their activation is given by:

Vi; =d;i; Ry; .
Vvij = FT(VU) (qu wng;q + yu) (5)
Viy = Fo(Vig) (g wia Mg, + i)

where F; is a step function with threshold 7, R;; is the
activation of unit r;; in the retinotopic sensory map
R, and M, is the activation of unit my, in the visual
motor map M". The units of the bottom map V are
fully connected with the units of the Saliency map S.
However, the strength of the connections are weighted

as a function of the activation of the other two units of
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the same column < ¢,j >, so that a spatial inhibitory
organization is present in the connection scheme. The
connection weight between units v,q and s;; is given
by

af =1 if (VS Vi) = (i/N2,j /NP < 7,
a;]q =0 otherwise

(6)
where 7, is a a priori set threshold, and N¢ and N¥
are the numbers of units along the two directions of the
Saliency Map. What happens is that the activation
of units vf}, vf’j determines where to project on the
saliency map the retinotpoic input in position (4, 5).

Learning occurs by properly modifying the weights
yi; and w;;. Weights are updated on the basis of the
retinotopic error € = (e, €, ) registered after the execu-
tion of a visuomotor saccade (sensory feedback learn-

ing).:

y”(t—i-l)—y ()+k € Vi

(t +1)= ( )+ k;?;LemM;; )
yw<t+1>~yw< )+ ke Vi ®
wi(t+1) = ()+k¢enyj

In the visual system a linear model can be adopted
by adding separately the visual and motor contribu-
tions, since they can always be considered indipendent
for every position of the cameras and the stimuli. In
the tactile system a similar linear separation is not
feasible: foveation angles are a nonlinear function of
the position of the tactile stimulus in the cutaneotopic
reference frame and of all the angles defining arm po-
sition. Thus, in the columnar orgamzatmn in Fig. 2
the activation of the units ¢;;, tw and t # in the three

layers 7, 7¢ and 7Y, is given by

quj5 = q;;Cs;
T F (Tl] (qu pqiy Mpq) (9)
qu - FT (TZJ) (qu ;jqu]MC )

where C;; is the activation of unit ¢,7 in the cuta-
neotopic sensory map C and M oq the activation of unit
mg, in the tactile motor map MC Also in the tactile
sub-system, the units of the bottom map 7 are fully
connected with the units of the Saliency map, and
the connections are inhibited by the activation of the
units of the other two layers. The connection weight

between units ¢,, and s;; is given by

i3

W =1 if (J(TS,TY) — (i/N$,j/ND)|| < =
bfj'? =0 otherwise

(10)

Retinotople
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Figure 2: In both the sensory modalities, the activa-
tion of the motor—proprioceptive maps and the sensory
maps are combined in a sensorytopic columnar organi-
zation which produces the corresponding cues for the
saliency map.

In the tactile system adaptation is provided by
changes in the weights z;'qij,z;[’qij‘ In this case, both
the consistency and feedback learning processes con-
tribute to updating the connection weights. If the tac-
tile stimulus has a visual counterpart which happens
to be in the visual field, then vision acts as a refer-
ence sensory modality, and the difference between the
visual and tactile cues on the saliency map is used as
a target error for improving performances. If only a
tactile stimulus is present, a somatosensory saccades is
attempted on the basis of the current status of the sys-
tem, and the resulting retinotopic error is then used.
In both the cases weights are updated as

= p? ¢ c
W (t+1) = bz,bw(t) FESM,
pqz] (t + 1) - bpqz]( ) + kb 6ZUMpq

where § = (6;,0,) can be the retinotopic (feedback-
based) or the angular (consistency-based) error, de-
pending on which learning process is applied. In the
tactile subsystem it is worth noting that, even if the
full connectivity of the adaptive layer may induce to
suppose that a large number of connections is required,
this is not necessarily the case. In general, a high accu-
racy of somatosensory saccades is not necessary, thus
a smaller number of units in both the motor and sen-
sory maps can be employed. A lower accuracy of so-
matosensory saccades with respect to visuomotor ones
has been found also in humans [16].

4 Experimental Results

In the experiments, two robotic manipulators
PUMA 500 were used. One of the two manipulators
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was used as a head/eye visual system, with a b/w
camera mounted as an end—effector. Only the last
two joints of the manipulator were allowed to move, so
that the visual system was provided with two degrees
of freedom 1 (pan) and ¢ (tilt). On the other PUMA
a tactile sensitive probe was mounted as end—effector.
For this purpose, a Force/Torque sensor was used, and
the location of contact was derived by the monitored
data values, under the assumption that only a single
contact occurred at any time. Also the manipulator
holding the tactile probe was allowed of 2 d.o.f. cor-
responding to movements along the first two joints of
the arm

Figure 3: Execution of a somatosensory saccade: sys-
tem attention is first drawn by a visual stimulus, then
by a tactile one.

Preprocessing was carried out in both the visual
and tactile systems. As regards tactile data, the ac-
tivation of the input cutaneotopic map coded the po-
sition of the tactile event on the tool, evaluated as
the distance zy from the bottom of the tool. Prepro-
cessing in the visual system allowed the evaluation of
the position of the contact between the tactile probe
and external tool. This was achieved by thresholding
the image and using suitably colored tools (both the

end-effector and the tip of the tool used for providing
stimulation were painted so as to be differentiated in
the grey-level hystogram).

Fig. 3 shows the execution of visuomotor and so-
matosensory saccades. System performances at differ-
ent levels of learning are shown in table 1 and 2. The
values show that accuracy improves gradually with ex-
perience, and training times are not long. In both the
cases, good performances were achieved in less than
two hours (600 stimuli).

|

Foveation Error ﬂ

it mean | o2

50 | 0.17 0.26
200 | 0.08 0.05
400 | 0.05 0.03
600 | 0.02 0.01

Table 1: Accuracy of visuomotor saccades at different
learning levels (percentage of the visual field)

“ Foveation Error ﬂ

it mean | o2

100 | 0.20 1.66
300 | 0.10 0.59
600 | 0.07 0.14

Table 2: Accuracy of Somatosensory Saccades at dif-
ferent learning levels (percentage of the visual field)

5 Conclusions

The system described in this paper provides an ex-
ample of autonomous adaptive system with multisen-
sory attentive capabilities. The proposed architecture
is specifically designed for integrating attentive mech-
anisms belonging to different sensory modalities, and
for providing an intrinsic dependence on the task at
hand. In addition, learning capabilities have been in-
cluded so as to build adaptive sensorymotor coordina-
tions. As a result, the system develops its own func-
tional models, and changes the way it interacts with
the world according to the goal to accomplish.

A number of innovative aspects are present in the
system. First of all, it address the problem of im-
plementing touch-driven attention mechanisms in ma-
chines. So far, only few works have investigated non-
visual attentive processes. In the architecture de-
scribed in this paper, visual and non visual processes
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operate in the same way and no formal distinction
is required. As regards learning, we have investi-
gated the coexistence of different processes, which con-
tributed to increasing robustness. In addition, we have
shown results in the case of real robotic applications
(and not simplified simulations).

The obtained results propose the approach as an
alternative method for the calibration of complex
robotic systems, with the advantages of autonomy and
continuous adaptability. This is important when a
sensory modality like touch, which require a physical
contact, is included, since the extension of more tra-
ditional calibration methods to this case is not imme-
diate and an external operator (or a highly structured
environment) is usually required.

Several directions of future research are possible.
From one side, it could be interesting to apply the ap-
proach to more sophisticated robotic systems and an-
alyze more complex tasks with a large number of pro-
cesses. For example, it could be interesting to apply
the architecture to the implementation of touch-driven
attention mechanisms in the context of manipulation
with multifingered robotic hands. From the other, a
number of theoretical issues can be further investi-
gated, such as the autonomous evaluation of suitable
task weights for performing specific tasks, or the in-
clusion in the architecture of other motor control pro-
cedures.
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