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Abstract

Fr-this.paperwe-propoesed system for visual recognition
derived from a recently developed theoretical framework on the
overall organization of the human visual systent” The system
operates dynamically by analyzing different parts of the input
scene at variable levels of resolution through an attentional
spotlight . A constant amount of information is gathered from the
scene and a fixed dimension icon is produced, so that a trade-off
WM Berween the extension of the examined area and the level of
resolution atwhichdata are analyzed. The position of the spotlight
and its dimensions are determined on the basis of the evolution of
the recognitionprocess. Theiconisprocessed by abottom-up path
=whicheis composed of a five-layer artificial neural network. The
results of this net are analyzed by a planning module which
determines if recognition has been achieved, or which action to
undertake next. Finally, a top-down path, including a set of nets
trained by the back=propagation algorithm, evaluates the
parameters of the next sampling of information. The application
of the system to the-ease-efobject recognition with varying view-

point and range from the camera is investigated.

1. Introduction

Humanvision worksinadynamic world characterized
by large variability both in space and in time. As a
consequence, an incredible amount of visual information
fallsateverytime onoureyes. Nevertheless, we survive well
inthis world and we interact with the environment seemingly
without any effort. A significant contribution to this result
comes from selective visual attention, that is our capability
of processing differentiately simultaneous sources of visual
information [1}. By means of selective attention we can
discriminate among input data so as to attend to the crucial
information for the task at hand and ignore the irrelevant.

Selective atiention can be seen as amechanism forthe
properallocationofalimited setof resources to the processing
of a large amount of data [2]. In this respect attention
mechanisms are extremely important in order to build a
robotic system which is able to work in unknown
environments. In fact, in spite of the great progresses in
computer technologies, the computational power of current
computers is still far lower than that of the mind. This
implies that resources available to process perceptual data
are very limited. Surprisingly, apart from some noticeable
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ion (3], researchers in computer vision have not
dedfcated much effort so far to the topic of selective visual
tention [4].

Recentneurophysiological findings and psychological
models have emphasized that Selective Attention (SA) can
play a fundamental role in visual recognition [5], [6]. We
believe that these results can be an important guidance to
lead computer vision researchers towards the proper design
of robotic vision systems.

Based onthese considerations, inthis paper we propose
aneural nctwork-based system for visual recognition which
makes use of some mechanisms of selective attention. The
system is derived from a theoretical framework about the
organization of the human visual system developed recently
by Nakayama {7]. Thanks to the adaptability and flexibility
provided by SA we have observed that a scale-invariant and
view-point independent visual recognition process is
possible.

In the following section, the main properties of SA
mechanisms in humans and the framework proposed by
Nakayama are briefly reviewed. In section 3 the
implementation of this architecture by means of Artificial
Neural Network (ANN) techniques is described; finally, in
section 4 the system application to the problem of view-
point independent object recognition is analyzed.

2. Selective Attention and Visual Recognition

Many psychophysical experiments have contributed
to spread the idea that SA in visual perception has the
characteristic of a “limited extent” spotlight [8] [9]. The
processing of the stimuli included in the spotlight beam
seems to be facilitated with respect to external data [10].
Other experiments have shown that the spotlight can be
moved independently on eye fixations [11] and it can vary
in size [12].

A very important problem concerns the control of the
attentional spotlight in time, that is which factors contribute
to draw attention in a given situation. A fundamental
distinction was already made in 1890 by William James
[13], when he noticed that visual attention can be drawn by
stimuli at least by two factors: from one side attention can be
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drawn automatically by the sensory characteristics of the
stimuli, and from the other side attention can be drawn by
the semantic characteristics of the stimuli. This opposition,

. which corresponds to a distinction between low-level and
high-level mechanisms, seems to have recently received an
experimental support by the finding of two separate temporal
components contributing to the shifts of visual attention
[14] [15]. ) .

Itis an old controversy whether visual recognition is
a paralle], one-step process or a serial, step-by-step one
controlled by attentionmechanisms [ 16). The parallel process
was maintained by the Gestalt school, with the assumption
that visual recognition involves a single matching of the
whole object withitsintemnal representation. Onthe contrary,
the serial process implies that many matches of the object
parts and features are required o recognize and that the
objectinternal representationis an assemblage composed of
the representations of all the parts.

Recently, a theoretical speculative framework of the
overall structure of the human visual system supporting the
step-by-step hypothesis has been proposed by Nakayama
[7]. This framework outlines the relationships between

carly vision and visual memory, and the role played by-

selective attention in visual perception. According to this
model the visual system can be regarded as consisting of two
parts, as shown in Fig.1: a feature pyramid and a visual
memory. The feature pyramid isamassively parallel structure
which receives afferent visual inputs and which works on
different features at different levels of resolution. At the
other extreme of the visual system there is the visual
memory which consists of a large amount of tiny icons
linked associatively. The linkage between these two systems
isanarrow bandwidthchannel having a capacity of the order
of asingle icon. Inthis framework selective attention moves
the iconic channel in the feature pyramid, so as to sample
subsequently the information from different parts of the
scene and at variable level of resolution.

Feature
Pyramid

Ilconle
Bom.nuk] ->
O

r Vieus!
Memory
Input ecene
Fig.1: Nakayama's theoretical framewcrk. The feature pyramid and the

visual memory are linked by a narrow bandwidth channel: the iconic
bottleneck. .

The system described in this paper takes inspiration
from Nakayama's framework: the feature pyramid, the
iconic bottleneck and the associative memory, all have
functional counterparts in the nets implementing the system
we propose. The simulation of semantic, high level control
processes of selective visual attention in visual recognition
is the main focus of the system. Even if the underlying
philosophy is inspired to the biological system, in the actual
implementation of the system biological plausibility was
not the main goal. Nevertheless, some neurophysiological
results were used as design guide in the development of the
system, as will be shown in the following section.

3. A neural network based architecture

We believe that Artificial Neural Networks (ANNs)
are suitable tools for the implementation of artificial
perception systems. Such peculiar features of many ANNs
paradigms as their relatively high tolerance to noise, and to
their own faults and defects [17] [18], are very important
properties when building a computer vision system.
Furthermore, ANNs have the intrinsic capability of
processing simultaneously different sources of information
such as edges and regions, so as to overcome the difficult
problem of integrating the results produced by different
algorithms, each one working on a different kind of
information [19].

There are also some practical considerations that
encouraged us to use ANNSs, most of which are related to
their speed and flexibility: for example, the application of
the system described in this paper to different recognition
problems requires only a few short additional training
sessions. :

The basic aim of the system described in this paper is
to achieve a robust and fast recognition in a partially
controlled environment, independently on the distance and
the position of the analyzed object with respect to the
camera. The system operates dynamically, so that the
information processed at a given time drives successive
fixations. In this way, the part of the scene examined at a
given moment depends on the state of the system, that is on
its past history during the recognition process. The
examination of the scene or of a part of it can produce a
series of hypotheses regarding object identity, which can be
checked by looking for their salient parts and features.

A general scheme of the proposed architecture is
showninFig.2. Basically, the architecture includes a bottom-
up path, a planning module and a top-down path. The
bottom-up path processes the information gathered through
avariable-size moving attentional spotlight so as to activate
decisions in the planning modules. Based on the results of
the processing, the planning module determines whether
recognition has been achieved or, if not, which part
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Fig.2: Scheme of the proposed system. The bottom-up path, the planning
module and the top-down path are arranged in a loop so as to process
dynamically the input scene.

ofthe input scene should be examined. The actual parameters
of next attentional fixations (position and size of the selected
area) are determined by means of the top-down path.

The representation of each object to recognize is
distributed among the modules of the system. An example
of object representation is depicted in Figure 3. In the figure
an object is represented by means of a set of icons stored in
the connections weights of the bottom-up path whose spatial
structure is stored in the top-down path. A setof units acting
as grand-mother cells for these representative icons are also
present in the bottom-up path . These units, together with
another unit sensitive to the object being considered, form
a sort of high level representation, as can be observed in the
Figure. The object representation is normalized withrespect
to scale factors. It will be shown later on that, if the spatial
arrangement of the icons and their relative dimensions

WL-1

@

Spatlal

Relationships Top-down

Path

Fig.3: The objectrepresentation is composed of a set of icons stored in the
bottom-up path and of their spatial relanonships included in the top-down
path. In addition, there is a high level representation of units sensitive to
the representative icons.

are also coded relatively to one ormore reference dimensions
of the attentional spotlight are properly set, objects differing
only in size can produce similar icons. The icons, so that if
the size of these icons has been determined the dimensions
and positions of all the others can be singled out. The
representation used here is similar to the Iconic Associative
Memory of the theoretical framework described in Section
2. Also in this case, the use of a fragmentary representation
givesagreatcontribute toward the goal of robust recognition.

3.1 The Bottom-up path

The input scene is analyzed through a moving
attentional spotlight of variable size. Data included in the
spotlight beam are preprocessed so as to replicate the iconic
attentional bottleneck, whereas the data outside the beam
are not considered. The amount of information gathered is
limited to a constant value producing an icon whose
dimensions are fixed and do not depend on the size of the
attentional spotlight. An inverse proportionality is built
between the attentional spotlight dimensions and the level
of resolution at which the part of the scene is examined: an
increment of the width of the analyzed area results in a
corresponding decrement of the level of resolution at which
the data are examined. In this way amultiresolution pyramid
is dynamically simulated by producing at each moment its
partofinterest. The data sampled by means of the attentional
spotlight are preprocessed in the bottom-up path: at first, the
edges of the examined area of the input scene are extracted
with a gradient operator. As shown in Figure 4, the resulting
image is then re-sampled at alower resolution by examining
it through gaussian receptive ficlds, and the dynamics of the
resulting iconis expanded so as to emphasize the parts of the
examined area with stronger edges and/or higher
concentration of edges.

Gausslan
Receptive
Flelds

Fig.4: An icon is produced by re-sampling the image by means of
gaussian receptive fields. The gaussian filtering reduce the aliasing due
to the decimation.
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Fig.5: The basis for scale-independent recognition. When the size of the
atientional spouight is properly set, objects with different scale factors
produce similar icons.

The width of the gaussian receptive fields, which
depends on the spotlight dimensions, is automatically
adjusted by setting the proper value of ©.

The automatic adjustment of the receptive ficlds of
the icon respect to the size of the examined area is the basis
for scale-invariance in the recognition process. Figure 5
illustrates this concept by showing how objects having
different size produce the same icon if the spotlight
dimensions are properly set. According to the definitions
introduced in Section 2, the initial width of the spotlight
beam is established on the basis of low-level attention
mechanisms; The dimensions of the spotlight in successive
fixations are then evaluated according to this initial width
and to the relative width of the examined part stored in the
memory of the system. Although low-level attention
mcchanisms are not the main focus of this paper, anexample
of how the initial width of the atientional spotlight can be
evaluated in the case of object recognition is shown in
Section 4. '

The processed icon is accepted as input by the five-
layered neural network depicted in Figure 6 (the five layers
of units include the input layer). As illustrated in the figure,
the units in layer UL-1 are arranged in a square matrix
whose number can change with the application (a 15x15
array was uscd in the experiments described in section 4).
Layers UL-2 and UL-3 have the same number of units, and
are connected in a 1-1 fashion. The number of units of layer
UL-3is equal to the number of objects to recognize. The net
can be split in two main parts: the first three layers act as a
classifier forthe incomingicon, while thelasttwo layers can
be seen as the long term memory of the system. The first part
of the net is similar to the counterpropagation network [20]
with a self-organized topological feature map [21], [22] in
the second layer followed by a sorting layer.

from the
Planning
Module

wWL-2

UL4

UL-2

UL-3

Fig.6: The bottom-up path is a feed-forward neural network composed of
five layers.

The topological feature map performs a matching
operation between the processed icon and asetof generalized
icons stored in the first layer connection weights (WL-1)
during the training phase. The main difference between the
first two layers of the bottom-up path and a self-organized
topological feature map as proposed by Kohonen, is the lack
of connections among the units of UL-1; this fact explains
the absence of blob of activation in this layer.

The first layer of weights of the net WL-1 shares with
a self-organizing map the same training procedure: an
unsupervised leaming process which requires the recurrent
presentation of patterns of the training set to the net. During
the training, the weight vectors of the maximally responding
unit and of the units in a neighborhood of it are modified
towards the input vector, whereas the size of the
neighborhood and the parameters regulating weight changes
decrease.

Theicons used fortraining WL.-1 have the attentional
spotlight centered on the significant parts of the imaged
object which arc used for its representation. Whatisexpected
is that the map of UL-1 will leam to discriminate among
different features by producing several disconnected areas
where units are scnsitive to icons of the same feature.

As in [23] the activation Uk of unit uk in layer UL-1
is a measurement (comprised between O and 1) of the
distance between its own weight vector wk and the input
icon p.

1

Uk=0(sx)= 1+ exp(-Bu(du—sk)) G-
~ 1-[p-af iffp-ax] < dm
(p)= { 0 otherwise ¢.2)
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where dp is an empirically chosen distance.

Inthe network of the bottom-up path, only the weights
of the topological feature map are calculated by means of
training. The weights in all the other layers are evaluated
directly by algebraic calculations. The weights Bym
(k=1,...K; m=1,...,M) of the layer WL-2 between the sccond
and the third layer, are arranged in orderto map the activation
of the topological feature map so that each unit o in UL-
3 is sensitive to a specific feature. For each weight Bxm, the
mean sensitivity of unit uk to feature m is evaluated by
averaging the output of the unit to all the icons representing
the considered feature. In this way a vector 1y composed of
the mean sensitivities of unitu to all the features is defined.
The weight Bxm between the units oy in UL-2 and the uk
in UL-1 is evaluated as the normalized m-th component of
vector Nk

Bkm = Mkm / Ik (3.3)

As in layer UL-1, also the units of UL-2 have a
sigmoid activation function, so that the output Om of unit
Om 18 given by

1

3.4
1+ exp(-Bo(Bo = (¥ UxBim — 5(0) Y Bm))) G4)

Ux =0(sk) =

The first sum in the exponential of equation (3.4) is
the net input to unit oy provided by the topological feature
map; the second sum is a unit-dependent threshold which
has been introduced in order to eliminate the low resting
activation of the units in UL-1.

The weights 8k inlayer WL-3 take binary values (O or
1) and are controlled by the planning module according to
the followed strategy. If the system is looking for a specific
part of an object, in order to test a previously formulated
hypothesis, only the unit sensitive to that feature is allowed
to receive activation by the planning module; all the others
Ok aresetto zero. Thisoperation reduces the errorprobability
by biasing the system toward the search of a particular
stimutus. It should be pointed out that such a modulation
effectonneuron response due to selective attention has been
recently found by neurophysiologists in the visual cortex of
the monkey [5].

Units in layers UL-3 and UL-4 act as Grand-Mother
cells, i.e they are sensitive to specific input patterns. In
particular, units in UL-3 are sensitive (as units in UL-2 to
which they are connected in a 1-1 manner) to specific
features of the object to recognize, and each unit in UL-3
responds to a specific object independently on the examined
object feature. An abstraction process can be noticed in the
bottom-up path, due to the fact that the units in successive
layers are sensitive to increasingly generalized stimuli.

When put together, units in layers UL-3 and UL-4

build up ahigh-level representation composed of the Grand-
Mother Cells of cach object to recognize (see Figure 6); in
this respect they constitute the long term memory of the
system. In this high level representation every object to
recognize is represented by a set of units in UL-3 (a sort of
feature layer), each one standing for a feature or apart of the
object, and by a single unit in UL-4 (a hypothesis layer)
connected with the previous ones in an excitatory manner.
Asillustrated in Figure 6, each unit of UL-3 is activated by
the corresponding unit of UL-2 when the spotlight of
attention is centered on the feature which the unit represents
and the size of the beam is such to completely enclose that
feature. The structure of this high-level representation is
similar to the scheme proposed by Burt [24].

Units in layer UL-3 act as accumulators, by storing
and accumulating the activation provided by UL-2 units.
The output of unit fi, is given by the sum of all the outputs
of om multiplied by the connection weightym on all previous
attentional fixations.

Fm(®) = Zt ym(® U(Om®) (3.5)
where
X-Sm if x> Sm
vk = { 0 otherwise 3.6

The function U(x) and its threshold Sy have been
introduced in order to eliminate the resting activation of unit
om. The activation of each UL-3 unit fi can be set to zero
by the planning module when the system fails to test a
previously formulated hypothesis. As will be explained in
the following, inthis case the planning module resets all the
units of UL-3 which are sensitive to features of the rejected
object, by means of the returning inhibitory connections
shown in Figure 7.

Planning
Module

Inhibitory

oconneations

Exclitatory
connections

Winner-Take-All
connections

Fig.7: The inhibitory feedback net. By means of these connections the
Planm;:g Module can reset units in layers UL-3 and UL-4 of the bottom-
up path.
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The connections in layer WL-4 link those units
sensitive to the same object, as displayed in Figure 6. The
weights of these connections have positive fixed values
whose aim is to bring excitation to the Grand-Mother cells
in UL-4.

Units in layer UL~4 inhibit each other in a Winner-
Take-All (WTA) fashion [25] [26]. Based on the WTA
equations, the activation is allowed to diffuse among the
units in layer UL4 so that, after a short time, only one unit
of the layer has a positive value of activation while all the
others are inhibited (output equal to zero). This is equivalent
to the formulation of an hypothesis on the identity of the
observed object. From this point of view, recognition can be
expressed as the eventual determination of a winning unitin
layer UL4.

It is important to notice that the network shows some
phenomena peculiar to cognitive systems, such as
generalization and abstraction processes. If significant, a
part of an object can saturate the unit which represents that
object in UL4, thus producing recognition.

Furthermore, the use of Grand-Mother Cells is well
suited for the interaction of neural and symbolic techniques,
taking advantages of both methods. This allows the use of
more traditional Al techniques, such as rule-based systems
for high level analysis and for the interpretation of the
results of neural modules.

3.2 The Planning Module

The results of the bottom-up path are examined by the
Planning Module, which determines whether recognition
has been achieved or, otherwise, which part of the
hypothesized object the system should look for. As shown
in Figure 6 and in Figure 7, the Planning Module interacts
actively with the bottom-up path by means of a set of
inhibitory connections.

The adopted control strategy assumes that the first
sampling of information (driven by low-level attention
mechanisms) is such to analyze the whole object. This
implies that the attentional spotlight is centered on the
object centroid and the beam size includes the object
completely. The reason for this constraint is that the spatial
structure of the object is coded according to reference icons
that are created with the previous spotlight conditions. The
first attentional icon and the corresponding spotlight
parameters (position and dimensions) are stored in a short-
term memory by the planning module when the
corresponding unit in UL-4 is activated.

By means of the first attentional fixations a set of
hypotheses on the identity of the observed object is
formulated, i.e several units in UL-4 receive activation
greater than zero. Due to the WTA connections in this layer,
after a transient all the hypotheses other than the winning
onc are suppressed. The basic strategy followed by the

Planning Module requires that the features of the
hypothesized object arc sequentially examined: recognition
is achieved if the net input to the UL-4 unit is larger than a
predetermined threshold. If ahypothesis cannot be tested by
the successive attentional fixations, the Planning Module
resets all the units of layer UL-3 which are sensitive to the
features of the rejected object, and the WTA layer UL-4. In
this way the second most probable hypothesis wins the
competition and its features are then analyzed. The serial
examination-inhibition cycle is repeated until recognitionis
achieved or all hypotheses are sequentially examined.

When a feature is chosen, the Planning Module
performs two operations: a) it sets the weights ym in layer
WL-3 of the Bottom-up path so that only those units
corresponding to the expected feature are allowed to receive
activation; and b) it activates the modules of the Top-Down
path corresponding to the considered feature.

Theintroductionofathreshold onrecognition accuracy
allows a trade-off between recognition time and precision:
if the threshold is high, more attentional fixations are
required and the system is more reliable; on the contrary if
the threshold is low, recognition can be achieved with a
shorter number of attentional fixations, but the error
probability is higher.

3.3 The Top-Down Path

As seen in paragraph 3.2, during the recognition
process the Planning Module determines which part of the
object to examine next. In order to move the spotlightin the
corresponding part of the scene and to set the proper level
of resolution a what-where conversion is required, i.e. the
feature identity should be transformed in the corresponding
spatial position. Two factors contribute to this
transformation: anaprioriknowledge of the spatial structure
of the object (a top-down information which is included in
the three-dimensional object representation), and the scene
information (bottom-up information) which is included in
short-term memory of the system with the first attentional
fixation.

This transformation is carricd out by the Planning
Module which, on the basis of the feature selection carried
out by the Planning Module, determines the location where
to move the attentional spotlight in the scene, and the level
ofresolution at which data should be analyzed. Asillustrated
inFigure 8, the Top-down Pathis composed of two modules:
a Position Module (PM) and a Dimension Module (DM).
The PM includes a four-layer full-connected feed-forwarg
ANN trained by means of the back-propagation algorithm
{271 for each feature of each object to recognize. The DM
has the same number of storage cells. Only one network and
one cell, those corresponding to the feature currently
examined, arc activated by the Planning Module and operate
at a given time.
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Fig.8: The top-down path is composed of a Position Module and of a
Dimension Module which provides the spotlight coordinates and size,

respectively.

Each ANN is trained to produce the coordinates of
the centroid of the corresponding feature in a scale-
independent reference system: the actual coordinates of the
feature centroid are evaluated by multiplying the values
produced by the nets by the scale factor. The nets accept as
input the first sampled attentional icon stored in the short-
term memory of the system and give the two values of the
coordinate of the feature centroid. A sparse code based on
M+1 output units (M is the number of pixels of the icon side)
optimized experimentally has been used. All the nets have
the same structure with MxM units in the input layer and
M+1 units in the second layer, and two branches, each
composed of M+1 unitsinboth the third and the forthlayers.

Each storage cell stores the relative dimensions (in
the size-independent reference system) of the attentional
spotlight when centered on the considered feature. Once
again the true dimension of the spotlight is obtained by
multiplying the relative dimension by the scale factor stored
inthe short-term memory during the first attentional fixation.

4. Object Recognition

The system described before has been applied to the
case of view-point independent object recognition among a
pre-established set of objects. The object could appear with
differentorientations and distance with respect to the camera,
so that different features with different scale factors are
visible in each presentation.

For each object a number of features have been
manually selected inorderto create the object representation.
A sct of objects used in this experiment (a small Japanese
doll, an Italian coffee-maker and a hammer) are

" Fig.9: Three objects used for testing the system. The squares correspond

to representative icons stored by the system.

shown in Figure 9, along with their representative features

The objects werelocated on atable in frontof ahomogeneous
background and the illumination was arranged so as to avoid
sharp shades and reflexes. Several images, 256x256 pixel
wide were acquired by a black and white camera with 64
grey-levels.

The icons were squares of 20 pixels side and were
processed by a bottom-up path composed of 400 units in
UL-1 (a topological feature map with 20 units along each
axis), 10 units in UL-2 and UL-3 (the same number of the
features), and 3 units in UL-4 (the same number of the
objects). The top-down path included 7 networks and 7
storage cells, one foreach feature 1o locate); as discussed in
section 3.3, cach net was composed of 400 (20x20) units in
the input layer, 21 and 21 units in the hidden layers, and 42
(21+21) units in the output layer.

Anumberofimages foreach object were used to train
the netsofthe system: windowslocated onthe representative
features were extracted from the images and their positions
and dimensions were stored, The topological feature mapin
layer UL-1 of the bottom-up path was trained by means of
the unsupervised leaming procedure described in paragraph
3.1, where the icons corresponded to the selected windows.
For the training of the nets included in the top-down path,
the lowest resolution icons (that is the icons corresponding
to windows covering the whole object) and the feature
relative positions were used as input and output signals,
respectively.

Typical values of unit parameters in the bottom-up
path were $,=0.89 and 6y=0.5 which corresponds to a
sigmoid function with s(0)=0.05 and s(1)=0.95.

The first attentional fixation was driven by a very
easy low-level attention mechanism which was aimed to
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produce the lowest resolution icons shown in Figure 10.
This mechanism was implemented by subtracting the object
image to the background so as to eliminate all the pixels that
did not belong to the object. The width and the height of the
window were then easily calculated.

The system exhibited good performances: percentages
ofcorrect recognition were 94.7% forthe doll, 92.3% for the
coffee-maker and 91.7% for the hammer. Recognition was
robust due to the fact that object identity could be assessed
also if some features did not provided activation. All the
errors were due to the lack of activation of the correct
hypothesis during the first attentional fixation.

This situation can be further improved by integrating
othersensor modalities. An example of this approach, based
ontheintegrationof visual and tactile perception, is described
in [28]

5. Conclusions

The replication of selective attention mechanisms, as
evidenced by humans, is extremely important in the field
Computer Vision. By means of selective attention a proper
allocation of the available resources for the task at hand can
be achieved. In this paper we have shown how a system for
visual recognition based on atientive processes can be
implemented by means of ANNs techniques.

Several research directions are being investigated. In
particular, we are evaluating the limits of the system when
the number of objects to recognize increases. Furthermore,
the possibility of updating the system during the recognition
process and of including also low level mechanisms for the
control of attention is being considered. Finally, the
integrationof visual attentionmechanisms with manipulation
and touch-based active exploration [29] [30] is investigated
as means to increase the understanding and the usefulness
of artificial perception in advanced robotics.
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