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Abstract

The development of autonomous systems capable of
executing intelligent exploratory procedures requires the
understanding of the interactions between touch and motor
control modalities. In robotic tactile perception this is the
basic step toward the execution of highly sophisticated
motor procedures such as grasping and manipulation.

In this paper the problem of autonomous learning of
tactile-motor coordination is investigated in the case of a
robotic system composed of a multi-functional tactile probe
mounted on a robotic manipulator. A neural network
architecture linking changes in the sensed tactile pattern
with the motor action performed is described, and
experimental results are analyzed. The generation of motor
controlprocedures for actively estimating surface curvature
is considered as an example of application of the proposed
approach.

1. Introduction

During the last two decades research on artificial tactile
perception has mainly focused on the design and the
development of new sensors, and a large number of
technologies has been applied to the detection of contact
information [1] [2] [3]. Thanks to these efforts a wide range
of sensors have been developed, most of them able to catch
a specific aspect of the available tactile information, such as
normal force, shear, vibrations, etc. [4] [5]. However, the
problem of interpreting tactile signals and of using contact
information for properly interacting with the surrounding
environment has not been seriously considered until recent
years [6] [7], mainly due to the fact that most of the
developed sensors were, and still are, far from producing
accurate and reliable measurements. Thus, not much work
has been carried out so far on basic problems of tactile
perception, that is the integration into a unitary perceptual
frame of the tactile information acquired with different
sensors [8] [9], and, in particular, on the integration of tactile
sensations and motor actions [10] [11] [12] [13] [14].

Motor control plays a major role in tactile perception,
since touch is an intrinsicly active sensorial modality. In
general, in order to volountarily gather tactile information
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the sensor must be brought in contact with the explored
surface and contact position and forces must be properly
adjusted. The use of touch as a source of information for
exploring unknown environment cannot be carried out
without taking into account the physical structure and the
posture of the system. Only by means of such geometrical
relationships the spatial location of a stimulus can be
determined and the spatial structures necessary for building
representations of the environment can be identified. The
use of active interaction with the scene has recently received
further attention after the observation [7] that some tactile
low-level problems are ill-posed in the sense of Hadamard
[15][16]. In fact, asresearchin the field of visual perception
has shown, underconstrained problems can be transformed
in well-posed and stable ones if additional information is
gathered by means of an active interaction with the
environment [17].

The development of autonomous systems capable of
executing intelligent exploratory movements requires the
understanding of the interactions between touch and motor
control modalities. Actions such as increasing the grasping
strength if an object slips away, or finely adjusting finger
positions and pressures during a grip, cannot be performed
if a strict relationship between tactile and motor modalities
has not been estabilished first . Such link would allow to
estabilish an effective physical and functional organization
of the system and it is the basic skill that an intelligent system
should posses in order to be able to perceive the environment.
Itis our every-day experience that humans develop accurate
sensory-motor coordination adaptable to functional and
physical changes of the body such as variations in the power
of themuscles and in the dimensions of the limbs and organs.
Neurophysiological and psychological evidences account
for the development of this coordination by means of learning
[18]. For example, experiments with the kitten have shown
that visually-guided behavior emerges only if sensorial
changes in the environment are systematically related to the
motor actions performed [19].

Autonomous robots have to produce similar adaptive
coordinations if they are to be effective in unknown
environments. They should be able to adapt their behaviour
to unpredictable modifications of their own structure due to
aging and damages. Difficulties inmodelling mathematically
physical systems, as well as the learning requirements,



account for the use of neural networks paradigms for adaptive
control.

In our laboratory, we are pursuing an approach to tactile
perception in robotics which is strongly inspired by the
biological world both in terms of sensor configuration and of
tactile signal processing. According to such a guiding
philosophy we developed a composite robotic fingerpad
including different kinds of tactile sensors, and we focused
on the problem of building adaptive tactile-motor
coordination for autonomous robotics systems. To the best
of our knowledge, the work described in this paper is the first
attempt to develop adaptive tactile-motor coordination in
robots.

The paper is organized as follows: next section describes
the robotic fingerpad enphasizing the analogies with human
finger; section 3 focuses on the development of tactile-motor
coordination in the case of the robotic finger; in section 4 an
example of how the developed coordination can be applied
to the execution of intelligent exploratory procedures, such
as the active estimation of surface curvature, is described
and experimental results are analyzed; finally, in section 5,
conclusions are drawn.

2. An anthropomorphic finger for investigating robotic
tactile perception

The human skin includes alarge number of tactile receptors
which differ substantially one from the other both from an
anatomical and a functional point of view. During tactile
stimulation, corpuscles with different receptive fields width
and frequency sensitivity range are activated by different
features of the tactile stimuli, so that the contact information
is intrinsically coded into a distributed representation.
Research in neurophysiology and psychophysics has
elucidated that such a parallel organization of the tactile
perceptual system is crucial for the powerful human
capabilities, and a functional modular organizationreflecting
the anatomical one has been found. In particular, it has been
proposed [20] that the sub-system composed of slowly
adapting receptors with narrow receptive field (SAI system),
such as the Merkel corpuscles, is the primary spatial system
and is responsible for tactual form and roughness perception
when the fingers contact a surface directly, and also for the
perception of external events through the distribution of
forces across the skin surface. Also, evidence exists that
Pacinian corpuscles (RAIl system) are involved in the
perception of external events that are manifested through
transmitted high frequency vibrations, and that Merkel
receptors (RAI system) are responsible for the detection and
representation of localized movements between skin and
surface, as well as for surface form and texture detection,
when surface variations are too small to engage the SAI
system.
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A robotic tactile probe (a robotic fingerpad) which
emulates the organization of the human tactile system has
been developed in our laboratory as a basic tool for
investigating artificial tactile perception [21] [22] [23]. The
present configuration of the fingerpad includes three kinds
of tactile sensors: piezoresistive, piezoelectric and thermal
sensors. Thanks to their intrinsic properties, piezoresistive
and piezoelectric sensors are well suited for mimicking the
functionality of SAT and RA systems, respectively. It should
be considered that these two systems account for more than
70% of the whole number of afferent fibers in humans [23].
A section of the robotic finger illustrating the layout of
various sensors is shown in Figure 1.

Piezorestive receptors are based on semiconductor
polymer technology and they are arranged into an array
structure located under a compliant layer made of silicon
rubber. As in the SAI system, sensing elements are
characterized by a high spatial density and by alow frequency
range of sensitivity. In order to replicate the distribution of
the Merkel corpuscles in the human fingerpad, a space-
variant array (the ARTS Tactile Sensor) has been designed
in our laboratory and erestom manufactured by Interlink
Europe [25]. The sensor, shown in Figure 2, has a high
spatial density central area - a sort of tactile fovea - where
spatial acuity is maximized, and a peripheral area where the
density of the sensing elements decreases gradually from
the fovea. This distribution, which is similar to the layout of
the receptors in the eye, implements a trade-off between the
width of the sensed field and number of sensing elements,
thus allowing to obtain a larger tactile field with a fixed
number of receptors. The sensor includes 16x16 sensing
sites (corresponding to the intersection points of the
conductive bars) which are located in an area of 2.92x3.07
cm?2, The spatial resolution varies from 1.8 mm in the fovea
to 4.4 mm in the periphery. The sensor is scanned by an
analog multiplexing unit with an image rate equal to 50 Hz,
and it can be used in a force range approximately equal to
0.1-20N.

The functionality of the RA system (Meissner and
Pacinian receptors) is emulated by piezoelectric sensors. As
shown in Figure 2, three polyvinylidene fluoride (PVDF)
film strips are embedded into ridges of the compliant layer
[26][21]. These strips are only 40 microns thick, and are
sensitive to high frequency (10-1,000 Hz) stimuli related to
the strains induced in each strip by vibrations and contact
[27]. Such dynamic sensors are associated with an
appropriate charge amplifying unit which acquires dataata
sampling frequency of 1 Khz.

In addition to the piezoresitive and piezoelectric sensors,
also thermal sensors have been included in the finger in
order to acquire the thermal properties of the examined
object material [8][28]. Thermal sensors are located between
the ridges of the elastomer and they are composed of a




miniaturized thermistor and an associated heating resistance
embedded in thermally conductive rubber .

Elastomer

Figure 1. A section of the multifunctional tactile probe
showing the location of the different tactile receptors.

Figure 2. The ARTS Tactile Sensor.
3. Development of tactile-motor coordination

Different neural networks approaches to adaptive sensory
motor coordination have been attempted [29] [30]. Particular
attention has been paid to the problem of visuo-motor
coordination, in particular for the eye-head and arm-eye
systems, and several system architectures have been proposed
[31][32][33] [34]. In general, in visuo-motor coordination,
visual images of the mechanical parts of the systems can be
directly related to posture signals. This will eventually allow
the system to reach for the object that it sees (arm-eye
coordination), or to properly shift gaze direction for looking
to desired parts of the visual field (eye-head coordination).

However, the tactile-motor case differs significantly from
the visuo-motor one, due to the intrinsic dependency on the
contacted surface. Tactile information is not passively
irradiated by the environment as in vision, but it should be
gathered by actively producing contact conditions. As a
consequence, the direct association of tactile sensations with
mechanical positioning of the parts is not feasible because an
environment-dependent tactile pattern is sensed for each
system position.
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In tactile perception a very important aspect is to
understand how a given contact condition will be modified
by motor acts, that is after having achieved a first contact,
analyze where and how contact will be sensed after asystem
movement.

Figure 3. Finger movements with respect to an external
reference frame. Feature enhancement movements involve
rotations of finger along 0 and «, and shifts along z.

In this way, environmental dependency can be eliminated
and the invariants of the tactile-motor correlation which are
only dependent on the physical and functional relationships
of the system can be extracted. The develoment of such a
coordination is crucial for sophisticated operations such as
tactile exploration and manipulation. Only on the basis of
this link finger position can be adjusted so as to properly
adapt the contact (for example by shifting the contact area
from the periphery to the fingerpad, if necessary) with a
grasped object for a more reliable grip. Also, with this kind
of tactile-motor coordination the highest resolution tactile
parts can be brought into contact with an object which has
been involuntarily bumped in order to explore it.

Figure 3 shows the possible movements that a robotic
finger can make with respect to an external reference frame
fixed with the contact surface. A basic qualitative distinction
can be carried out among movements along the various
degrees of freedom: whereas motor actions along x, y and
Yare intrinsically explorative because they bring new regions
of the surface into contact, 6, & and z are involved mainly
in adjustement movements which are allowed by the
compliance provided by the rubber sheet of the finger.
Owing to the resemblance of this latter class of motor acts
with the finger positioning and pressure adjustement that
humans unconsciously perform when they come into contact
with the environment, we have called them feature
enhancement micromovements.

As regards learning, the psychological concept of circular
reaction, which has been proposed by Piaget [18] to explain
how visuo-motor coordination can be achieved in humans,
has been applied [35]. The circular reaction scheme is based
on the association of sensorial data and randomly generated
movements, so that coordination develops by following
with the eyes the random motion of the arm. An extension
of the circular reaction concept to tactile-motor coordination



is shown in Figure 4. The system can learn its tactile-
proprioceptive coordination in a totally autonomous fashion,
without any external intervention, if changes in the tactile
pattern are systematically related to motor signals produced
by the proprioceptive system of the robot when random
motor actions are performed. The error between the motor
action estimated on the basis of the developing correlation
and the actual movement performed can at any time refine
the coordination, so as to adapt to changed conditions.

In this paper we focus on the development of sensory-
motor coordination in the case of feature enhancement
micromovements. The system we have considered consists
of the robotic finger described in section 2 mounted on a
robotic manipulator. Only signals provided by the
piezoresistive sensor array have been considered in the
experiments described in the following paragraphs.

4. A neural network-based implementation

The system architecture which has been used for learning
tactile-motor coordination is shown in Figure 5. The goal of
the system is to estimate the direction of a feature enhancement
motor action on the basis of modifications in the sensed
tactile pattern. Let T1 be the initial tactile pattern, acquired
atthe finger position P1=(z1,81, 01), and T2 the final pattern
after that the motor action has been performed when the
finger has the position P2=(z2 82, 002). At first the two tactile
patterns are processed and the coordinates (x1,y 1) and (x2,y2)
of the centroid of the contact areas are estimated, along with
the global intensities (I1,12) of the patterns:
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Asillustrated in the figure, each feature difference activates
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and N units, respectively. The unit ith in each map has, the
following gaussian activation function

. FY
uf =exp( 3, L)
8, - A
u} =exp( y20y ) @)
P 8-
u; =exp( 20, )
where the constants are:
X gup — Xing
A= —E— i+ 8xyy
X
BYsup — Oint .
N = gy 3
y
al, — ol
1 f .
A =—F i+ 8,

1

3233

error

Random
Movement
Generator
dT Tactile P’
—- Motor L
* P Coordination @
P
Robot
Proprioceptive
System

Figure 4. The circular reaction scheme for learning
tactile-motor coordination.
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Figure S. Scheme of the neural architecture (see text for
details).

As aresult, the activation of each unit is maximum if the
registered input feature difference is equal to a specific
value which the unit represents. The units of each feature
map are linked through a corresponding motor map (alayer
of weights) with a single output unit whose activation
indicates the motor action direction to be performed along
one of the degrees of freedom. The activation value of each
output unit is given by:
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The actual direction of movement is evaluated by
comparing the magnitude of the output with a threshold: if
the magnitude is larger than the threshold, the motordirection
is indicated by the activation sign; otherwise it is
undetermined. By means of learning, the weights in the
motor maps are slightly modified after each movement of
the finger, in order to improve system performance:
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Figure 6 shows the organization of the motor maps before
and after several thousands iterations. In each map, the
length of the i-th segment is proportional to the weight that
links the unitith in the corresponding feature map to theoutput
unit.

Figure 6. Weights in the motor maps (Nx= Ny =N=100)
before training (left) and after several thousands iterations
(right), for each degree-of-freedom (z, 9, o).

5. Experimental Results

For the experiments the robotic fingerpad has been
incorporated into arobotic fingerand onaPUMA manipulator
(see Figure 7). Resultant contact forces are monitored in
real-time by means of a Force-Torque sensor located at the
robot wrist. Tactile patterns relative to different curvature
radii were obtained by means of set of aluminum cones. A
low angle (3°) was used for the cones generatrix so as to
assume a constant curvature along all of the contact area.
Motor actions were performed by the PUMA manipulator
while the forces and torques values were carefully controlled
soastoavoidcritical conditions. The system wasimplemented
with Nx=100, Ny=100and N= 100 units in the feature maps,
and with ox=1 Oy=1 and 61=0.3 in eq.(2).

Tactile patterns were preprocessed by filtering them with a
gaussian filter (0=2) in order to reduce sensor noise. The
learning error (the avarage number of errors on a fixed
number of tests) decreased with the iteration number as
shown in Figure 8 so that after 4000 iterations the right
direction was estimated in the 82, 94 and 96 percent of the
cases along the degrees of freedom 2,8 and @, respectively.
In the remaining cases uncertainties were 10, 5.6 and 3.6
percent so that error rates were very low. Furthermore, the
spatial distribution of errors and uncertainties with respect to
the magnitude of each feature change, (shown in Figure 9),
account for the fact that wrong motor actions are performed
only when the desired position has almost been reached. The
transition from the learning to the operative phase is one of
the most crucial problems of neural network-based
architectures. An autonomous system should be able to
determine when a sufficient performance level has been
achieved, and to inhibit learning-dependent modules. In the
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case of the system described in this paper, the Random
Movement Generator could be inhibited when a priori set
etror rate threshold is reached. Empirically, we stopped the
learning phase after 4600 iterations.

It is worth noting that, even if random motor actions are no
larger generated, weights are changed also during the
execution phase, so as to adapt to possible changing
conditions.

Figure 7. The robotic finger mounted on a PUMA
manipulator.
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Figure 8. The number of errors decreases with learning
(e=0.05).

An example of how this type of sensory-motor
coordination can be applied to the production of intelligent
motor actions in the active estimate of surface cuvature
follows. Due to the fact that the explored surfaces (the
aluminium cones) have different curvature along a single
direction, only rotations along the 8 degree of freedom were
considered. In order to execute the rotations, the system
was required to reach an arbitrary target change in the y



coordinate of the contact centroid. As aresultof this constraint
the finger rotated until either the target change was sensed in
the corresponding feature map, or the monitored force
reached a threshold of 20 N. As shown in Figure 10, in both
the cases the average rotation performed depends on surface
curvature. This result is consistent with human every-day
experience that smaller curvature radii (which correspond to
a"steeper” slope of the plotin Figure 10)canbe differentiated
more easily by active probing.

0 0.1 0.2 03

Figure 9. Distribution of errors and undetermination with
respect to feature changes magnitude.
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Figurel0. Rotation (deg.) along 0 for different surface
curvatures (mm). (Filled dots): the target shift of the contact
centroid is reached. (Empty dots): rotation stops for having
reached the force threshold.
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6. Conclusions

Tactile information is crucial for developing robotic
systems which operate in uncertain environments. General-
purpose robots should be able to properly perceive if a
contact with the surrounding world has been achieved, and
to grasp, manipulate and analyze objects of interest, all
operations that require tactile capabilities. In the last 20
years, research on robotic tactile perception has achieved
significant improvements in the accuracy and reliability of
tactile sensors and has generated sensors specific to different
contactinformation. Suchsensors, even if far from producing
highly accurate quantitative measurements, provide
qualitative information which needs to be interpretated to
give meaningful results. This is similar to the behavior of
human receptors whose response has proved to be far from
systematic.

We believe that using already available tools, intelligent
autonomous systems can start to gather tactile information
from the environment and to build representations of the
explored world, if they know the physical and functional
organizations of their own system. The discovering of such
organizations implies the understanding of how sensorial
data and motor actions are related, that is the development
of sensory-motor coordination.

Inthis paper, the problem of developing adaptive sensory-
motor coordination has been applied to a simple robotic
system composed of a single finger mounted on a robotic
arm. However the proposed approach is general and could
be applied to much more sophisticated systems, such as
robotic dexterous hands. Also, it has been shown how
intelligent purposive motor actions, such as those for
curvature estimation, can be easily produced after that the
sensory-motor connection has been estabilished.

The experiments that we have shown in this paper are a
part of a general approach to robotic tactile perception that
we are currently following, which relies on the integration
of tactile data acquired by different receptors, and on the
active interaction with the scene based on the cooperation
of different modalities. Progress with this approach could
not only become the basis for developing more adptive
robots, but could also guide experimental analysis toward
the understanding of human sensory-motor control.
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